Flavor violation and New Physics in Rare

 decaysTakuya Morozumi
Hiroshima University
Mini－Workshop on，Quark，Lepton and Family
Gauge Bosons，2016／12／26 大阪大学

The paper which I studied for this workshop

1. Inclusive $\bar{B} \rightarrow X_{s} l^{+} l^{-}$; complete analysis and a thorough study of colliner photons.
T. Huber, T. Hurth, and E. Lunghi. (JHEP06(2015)176, Arxiv:1503.04849)

1-1. In this paper, the effects of the collinear photons (QED corrections) to Rare B decays $\bar{B} \rightarrow X_{s} l^{+} l^{-}(l=e, \mu)$ are included.

1-2. The structure of the double differential decay rate is modified compared with the case without collinear photons and various observables are affected due to thecollinear photons.

1-3. Including the effect, branching fractions for the modes $\bar{B} \rightarrow X_{s} e^{+} e^{-}$and $\bar{B} \rightarrow X_{s} \mu^{+} \mu^{-}$are predicted.

Issue of lepton universality of Rare B decay
Branching ratios in unit (10^{-6}) (Inclusive rates)
Babar,J.P.Lees et.al. PRL112(2014)211802
Low dilepton invariant mass region ($q^{2}=M_{l^{+} l^{-}}^{2}$)
$1<q^{2}\left(\mathrm{GeV}^{2}\right)<6$.
$B r\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)=0.66_{-0.76-0.24}^{+0.82+0.30} \pm 0.07$
$\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)=1.93_{-0.45-0.16}^{+0.47+0.21} \pm 0.07$
$B r\left(B \rightarrow X_{s} l^{+} l^{-}\right)=1.60_{-0.39-0.13}^{+0.41+0.17} \pm 0.07(l=e, \mu)$

High invariant mass region(Babar,J.P.Lees et.al. PRL112(2014)211802)
$14.2<q^{2}\left(\mathrm{GeV}^{2}\right)$

$$
\begin{aligned}
& B r\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)=0.60_{-0.29-0.04}^{+0.31+0.05} \pm 0.00 \\
& B r\left(B \rightarrow X_{s} e^{+} e^{-}\right)=0.56_{-0.18-0.03}^{+0.19+0.03} \pm 0.00 \\
& B r\left(B \rightarrow X_{s} l^{+} l^{-}\right)=0.57_{-0.15-0.02}^{+0.16+0.03} \pm 0.00
\end{aligned}
$$

Branching fractions for regions $M_{l^{+} l^{-}}>0.2(\mathrm{GeV})$ Belle, Iwasaki et.al. PRD72(2005)092005,

$$
\begin{aligned}
& \operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)=\left(4.04 \pm 1.30_{-0.83}^{+0.87}\right) \times 10^{-6} \\
& \operatorname{Br}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)=\left(4.13 \pm 1.05_{-0.81}^{+0.85}\right) \times 10^{-6} \\
& \operatorname{Br}\left(B \rightarrow X_{s} l^{+} l^{-}\right)=\left(4.11 \pm 0.83_{-0.81}^{+0.85}\right) \times 10^{-6}
\end{aligned}
$$

Belle: Low and High invariant mass regions. (lepton-flavor-averaged) Branching fractions; Iwasaki et.al.PRD72(2005)092005 Low invariant mass region:
$\left(1<q^{2}\left(\mathrm{GeV}^{2}\right)<6\right)$

$$
B r\left(B \rightarrow X_{s} l^{+} l^{-}\right)=1.493 \pm 0.504_{-0.321}^{+0.411}
$$

High invariant mass region:
$\left(14.44<q^{2}\left(\mathrm{GeV}^{2}\right)<25\right)$

$$
B r\left(B \rightarrow X_{s} l^{+} l^{-}\right)=0.418 \pm 0.117_{-0.068}^{+0.061}
$$

Figure 1: Differential Branching fractions. (electron) blue circles. (muon) black squares. (lepton-flavor-averaged) red triangles. The histogram is SM expectation without QED corrections. The figure is taken from Babar, J.P.Lees et.al. PRL112(2014).

$$
\begin{aligned}
& M\left(b \rightarrow s l^{+} l^{-}\right) \\
= & \frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[\left(C_{9_{e f f}} \overline{s_{L}} \gamma_{\mu} b_{L} \bar{l} \gamma^{\mu} l\right.\right. \\
+ & \left.C_{10} \overline{s_{L}} \gamma_{\mu} b_{L} \bar{l} \gamma^{\mu} \gamma_{5} l\right) \\
- & \left.2 C_{7}\left(\overline{s_{L}} i \sigma_{\mu \nu} \frac{q^{\nu}}{q^{2}} b_{R} m_{b}\right) \bar{l} \gamma^{\mu} l\right]
\end{aligned}
$$

Kinematical variables

In $\mathbf{c m}$ frame of dileptons, the angle θ is defined as an angle bet. incoming momentum of b and outgoing l^{+}.

Decay distribution $\hat{s}=q^{2} / m_{b \text { pole }}^{2}, z=\cos \theta$.

$$
\begin{aligned}
& \frac{d \Gamma}{d q^{2} d z}=\frac{3}{8}\left[\left(1+z^{2}\right) H_{T}\left(q^{2}\right)+2\left(1-z^{2}\right) H_{L}\left(q^{2}\right)+\right. \\
& \left.2 z H_{A}\left(q^{2}\right)\right] \\
H_{T}= & \frac{G_{F}^{2} m_{b \mathrm{pole}}^{5}\left|V_{t b} V_{t s}^{*}\right|^{2}}{48 \pi^{3}} 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2 C_{7}}{\hat{s}}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{L}= & \frac{G_{F}^{2} m_{b \mathrm{pole}}^{5}\left|V_{t b} V_{t s}^{*}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{A}= & -4 \frac{G_{F}^{2} m_{b \mathrm{pole}}^{5}\left|V_{t b} V_{t s}^{*}\right|^{2}}{48 \pi^{3}} \hat{s}(1-\hat{s})^{2} \operatorname{Re}\left\{C_{10}\left(C_{9}^{*}+\frac{2}{\hat{s}} C_{7}^{*}\right)\right\}
\end{aligned}
$$

$H_{T} \sim H_{A}$ are functions of dilepton mass squared \boldsymbol{q}^{2}.

Decay distribution and Forward backward Asymmetry

$$
\begin{aligned}
& \frac{d \Gamma}{d q^{2}}=\int_{-1}^{1} d z \frac{d^{2} \Gamma}{d q^{2} d z}=\frac{8}{3}\left(H_{T}\left(q^{2}\right)+H_{L}\left(q^{2}\right)\right), \\
& \frac{d A_{F B}}{d q^{2}}=\int_{-1}^{1} d z \frac{d^{2} \Gamma}{d q^{2} d z} \operatorname{sign}(z)=\frac{3}{4} H_{A}\left(q^{2}\right) \\
& \left(A_{F B}\right. \text { A.Ali, T.Mannel and T.Morozumi,1991) }
\end{aligned}
$$

Dimensionless \mathcal{H}_{I}.

$$
\begin{aligned}
& H_{I}\left(q^{2}\right)=\frac{G_{F}^{2} m_{b \mathrm{pole}}^{5}\left|V_{t b} V_{t s}^{*}\right|^{2}}{48 \pi^{3}} \Phi_{l l}^{I}(\hat{s}) \\
& \\
& \mathcal{H}_{I}\left(q^{2}\right) \equiv \frac{H_{I}\left(q^{2}\right)}{\Gamma[\bar{B}]}=\frac{H_{I}\left(q^{2}\right)}{\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right]} \operatorname{Br}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right) \\
& = \\
& \left.\frac{4}{C} \frac{\left|V_{t b} V_{t s}\right|^{2}}{\left|V_{c b}\right|^{2}} \frac{\Phi_{l l}^{I}(\hat{s})}{\Phi_{u}} B r\left(\bar{B} \rightarrow X_{c} e \bar{\nu}_{e}\right)\right|_{\text {exp. }} \\
& \\
& \frac{1}{\Gamma\left[\bar{B} \rightarrow X_{c} e \overline{\nu_{e}}\right]}=\frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2} C} \frac{1}{\Gamma\left[\bar{B} \rightarrow X_{u} e \overline{\nu_{e}}\right]}, C=0.574 \pm 0.019 \\
& \Gamma\left[\overline{B^{0}} \rightarrow X_{u} l \overline{\nu_{l}}\right]=\frac{G_{F}^{2} m_{b p o l e}^{5}\left|V_{u b}\right|^{2}}{192 \pi^{3}} \Phi_{u} \cdot\left(\tilde{\alpha_{s}}=\frac{\alpha_{s}}{4 \pi}, \kappa=\frac{\alpha_{e m}\left(\mu_{b}\right)}{\alpha_{s}\left(\mu_{b}\right)}\right) \\
& \Phi_{u}=1+\tilde{\alpha_{s}} \varphi^{(1)}+O(\kappa)+O\left({\tilde{\alpha_{s}}}^{2}\right)+O\left(1 / m_{b}^{2}\right)+\ldots, .
\end{aligned}
$$

Including QED corrections and the results In the paper, T. Huber, T. Hurth, and E. Lunghi, the log-enhanced QED bremsstrahlung effect are included and the sizable corrections to Branching fractions are found.

	$\frac{O_{[1,6]}}{B_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{B_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	5.1	5.1
\mathcal{H}_{T}	19.5	14.1	72.5
\mathcal{H}_{L}	80.0	-8.7	-10.9
\mathcal{H}_{A}	-3.3	1.4	-43.6

Table 1: The size of the QED corrections within the low dilepton invariant mass regions $q^{2} \in[1,6]\left(\mathrm{GeV}^{2}\right)\left(e^{+} e^{-}\right.$case $)$. The data is taken from the table 2 of T. Huber et.al. JHEP1506(2015)176.

Figure 2: Feynman diagram for emission of collinear photon (collinear to l^{+}).

The observation within the analysis $q^{2} \in[1,6]$

- The large QED corrections to \mathcal{H}_{T} is found. There is a suppression for H_{T} and H_{A} without QED effect.

$$
\begin{aligned}
& H_{T} \sim \hat{s}\left(\left|C_{9}+\frac{2 C_{7}}{\hat{s}}\right|^{2}+\left|C_{10}\right|^{2}\right) \\
& H_{L} \sim\left(\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right) \\
& H_{A} \sim-\hat{s} R e .\left(C_{9}+\frac{2 C_{7}}{\hat{s}}\right)\left(C_{10}^{*}\right)
\end{aligned}
$$

Flavor dependence of the standard model predictions

$B_{e e[1,6]}$	$B_{\mu \mu[1,6]}$
1.67 ± 0.10	1.62 ± 0.09

Table 2: Branching fractions for $e^{+} e^{-}$mode and $\mu^{+} \mu^{-}$mode.) in the unit of 10^{-6}. The data is taken from $\operatorname{Eqs}(5.13-5.14)$ of T. Huber et.al. JHEP1506(2015)176.

Figure 3: New Physics Constraints on new physics ($\boldsymbol{R}_{9}, \boldsymbol{R}_{10}$), $R_{i}=C_{i} / C_{i S M}$ The figure is taken from Fig. 4 of T . Huber et.al. JHEP1506(2015)176. The black regions are overlapping regions for high and low \boldsymbol{q}^{2} branching fraction constraints from Belle and Babar. The bottom figure is the constraints from the data in which electron and muon modes are added. The regions outside the parabola lines are allowed region obtained from the normalized forward backward asymmetry measured by Belle. For the details, see the original paper, T. Huber et.al. JHEP1506(2015)176.

Summary
Recent new calculation of FCNC modes $b \rightarrow s e^{+} e^{-}$and $b \rightarrow s \mu^{+} \mu^{-}$ taking into account of the QED bremsstrahlung effect does not give rize to large charged lepton flavor dependence for partially integrated $\left(q^{2} \in[1,6]\left(\mathrm{GeV}^{2}\right)\right)$ branching fraction. The theoretical calculation does not lead to the difference found for the central values of the Babar data for e and μ mode at low invariant mass regions. Since the statistical errors are still large, we should wait until the experimental data will be improved.

