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Outline of My Talk

• Flavour Physics in Particle Physics            

• Physics Motivation of Charged Lepton Flavour Violation

• Muon to electron conversion

• COMET at J-PARC

• Highly intense muon beam sources

• COMET Phase-I (under experimental preparation)

• Summary

muon to electron conversion in a muonic atom

µ� +N ! e� +N
(charged lepton flavor violation)



Big Picture in  
Particle Physics



New Physics 
Beyond the Standard Model

The Standard Model is 
considered to be 
incomplete. 
New Physics is needed.

H



Intensity Frontiers and Rare Process

Rare Decays
 Flavour Physics

use intense beams to 
observe rare processes 
and study the particle 

properties to probe 
physics beyond the SM.

The Intensity 
Frontier

To explore new physics at high energy scale



Why Rare Decays ?



Effective Lagrangian with New Physics

New Physics could be….

very small CNP with not-high energy Λ   

very high energy scale Λ with CNP~1     
or

Λ is the energy scale of new 
physics（～ｍNP） 
CNP is the coupling constant.

dimension 6
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Table 3.1: Sensitivity of the sources of flavour symmetry breaking accessible at low energy in the
quark sector (from meson-antimeson mixing processes), given in Eq. (3.3). The observables in-
clude oscillation frequencies (�m) and CP-violating parameters for the di↵erent systems. Taken
from Ref. [1]; note that limits from the Bs have since been further tightened.

Operator Limits on ⇤ (TeV) Limits on CNP Observables
(CNP = 1) (⇤ = 1TeV)

Re Im Re Im
(sL�µdL)2 9.8⇥ 102 1.6⇥ 104 9.0⇥ 10�7 3.4⇥ 10�9 �mK , "K

(sRdL)(sLdR) 1.8⇥ 104 3.2⇥ 105 6.9⇥ 10�9 2.6⇥ 10�11 �mK , "K

(cL�µuL)2 1.2⇥ 103 2.9⇥ 103 5.6⇥ 10�7 1.0⇥ 10�7 �mD, |q/p|, �D

(cRuL)(cLuR) 6.2⇥ 103 1.5⇥ 104 5.7⇥ 10�8 1.1⇥ 10�8 �mD, |q/p|, �D

(bL�µdL)2 6.6⇥ 102 9.3⇥ 102 2.3⇥ 10�6 1.1⇥ 10�6 �mBd , S�KS

(bRdL)(bLdR) 2.5⇥ 103 3.6⇥ 103 3.9⇥ 10�7 1.9⇥ 10�7 �mBd , S�KS

(bL�µsL)2 1.4⇥ 102 2.5⇥ 102 5.0⇥ 10�5 1.7⇥ 10�5 �mBs , S �
(bRsL)(bLsR) 4.8⇥ 102 8.3⇥ 102 8.8⇥ 10�6 2.9⇥ 10�6 �mBs , S �

hand, this success may be embarrassing since it could exclude possible large contributions
of new physics at the TeV scale. For instance, new physics may be included as

Le↵ = LSM +
CNP

⇤2
O(6)

ij , (3.3)

where the second term represents the new physics contribution and CNP and ⇤ are
the coupling constant and the energy scale of new physics respectively, and O(6)

ij is a
dimension-six operator. For example, from the measurements of� mK , �mD, �mBd ,
�mBs , CP violating parameters for K, D, Bd and Bs, the energy scale of new physics
⇤ ⇠ O(103) TeV in the case of CNP = 1 is assumed, or CNP is very small, of the order
of O(10�5) to O(10�11) if ⇤ = 1 TeV is assumed (see Table 3.1).

For the charged lepton sector, the constraint from flavour-changing processes (charged
lepton flavour violation) is even more severe. For instance, for µ+ ! e+�, one can con-
sider

CNP

⇤2
O(6)

ij !
Cµe

⇤2
eL�⇢⌫µR�F⇢⌫ . (3.4)

The present upper limit of B(µ! e�) < 2.4⇥ 10�12 gives

⇤ > 2⇥ 105 TeV ⇥ (Cµe)
1
2 . (3.5)

In the case of Cµe = 1, ⇤ can be O(105) TeV.
The good overall consistency of the quark flavour-changing processes and the strin-

gent limits of lepton flavour-changing processes indicates that there is not much room
for new sources of flavour symmetry breaking close to the TeV scale, or the scale of
new physics is very high. However, this is based on a very general argument. In some
specific theoretical models the constraints of new physics should be determined in a
model-dependent way, and sometimes the constraints could be less stringent.

In such theoretical models, we do expect small but detectable deviations from the
SM predictions, in selected special flavour-changing processes. They are the flavour-
changing processes with suppressed SM contributions, or the SM-forbidden processes
with no SM contribution.
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Λ > O(105) TeV with Cµe~O(1)

ex: Charged lepton flavour violation (CLFV), 

µ→eγ (B<4.2x10-13  from MEG(2016))

Cµe~O(10-9) with Λ < O(1) TeV

or



Why Rare Decays ?

Λ> O(105)TeV

Energy reach of New 
Physics by rare decays  

such as CLFV

It would be strategic to  
pursue rare decays 
before high energy 

machines (100 TeV).

(Indirect search)

Figure 3.2: A comparison of the parameter phase explored by COMET Phase-I and subsequent
experiments in comparison to the present limits from MEG and SINDRUM. Ÿ represents the relative
contribution of dipole and non-dipole operators and � is an e�ective energy scale of the new physics
(at tree-level).

of them and their predictions are given below.

3.1.1 CLFV with ZÕ

Many BSM models including SUSY, extra dimensions and technicolour predict the existence
of a new high mass Z boson, a Z Õ. The LHC experiments have searched for a Z Õ and have
placed a lower mass limit (at 95% C.L.) of 2.9 TeV. In Figure 3.3a the rate of neutrinoless muon
to electron conversion is shown as a function of the Z Õ mass highlighting, depending on the
coupling and o�-diagonal lepton mixing angles. It can be seen that the process has a sensitivity
beyond that achievable at the LHC. Indeed a comparison of di�erent muon CLFV processes,
muon g ≠ 2 and the LHC provides a powerful constraint on the Z Õ model parameters.

3.1.2 CLFV with SUSY

In SUSY seesaw models [9], the neutrino mass is generated through the seesaw mechanism which
introduces massive right-handed neutrinos (giving leptogenesis), and slepton mixing (giving
CLFV) is induced from neutrino mixing. The magnitudes of the Yukawa couplings are model
dependent and in several models e.g. SO(10) significant rates of CLFV are expected and the
muon to electron conversion process can be enhanced relative to the µ æ e“ process. This is
shown in Figure 3.3b which highlights that for large values of tan — and masses of the heavier
(SUSY) scalar Higgs below the universal scalar and gaugino masses (at the GUT scale) that
suppressions, below the canonical ratio of 389, in the range 1–100 are realised.

10



Why Leptons ?



FCNC 
(Flavor Changing Neutral Current)

SM + NP
Uncertainty of 

the SM prediction 
limits the sensitivity.

SM contribution has to be subtracted.

Quark Sector 
(SM suppressed)

ex. B

+ NPLepton Sector
(SM forbidden)

No SM contribution be subtracted.

Clear signature 
without any 
subtractions

ex. 



Observation of CLFV would indicate a clear signal of 
physics beyond the SM with massive neutrinos.

B(µ� e⇥) =
3�

32⌅

���
⇥

l

(VMNS)�µl
(VMNS)el

m2
⇥l

M2
W

���
2

Note:   LFV in SM with massive neutrinos

µ e

�

� very tiny!

The SM with neutrino masses predicts small event rates for the LFV.

W

The observation of the LFV will be clearly a discovery of 
physics beyond the SM with non-zero neutrino masses.

BR(µ� e�) ⇥ (⇥m2
�)2 < 10�54

5

�µ � �e

Rare Process

No SM Contribution to CLFV

BR~O(10-54)

GIM suppression



Quarks (SM-suppressed) and 

Leptons (SM-forbidden)

R � 1
�4Λ≧x10 —> R≦10-4

|ASM + �NP|2 � |ASM|2 + 2Re(ASM�NP) + |�N|2
Quark (SM suppressed)

Lepton (SM forbidden)

subject to uncertainty of SM prediction

|ASM + �NP|2 � |ASM|2 + 2Re(ASM�NP) + |�N|2

could go higher energy scale

amplitude

rate

NP contribution 
 ~ O(ε2)

NP contribution 
 ~ O(ε)

|ASM |2 ±�(|ASM |2)



Various Models Predict CLFV......



Example of Sensitivity to NP in 
High Energy Scale : SUSY models

y =
g2

16�2
�µe

Effective Lagrangian for 

•If          , 

•If                    , 

BR(µ⇥ e�) = 1� 10�11 �
�

2TeV
�

⇥4 �
⇥µe

10�2

⇥2

y =
g2

16⇥2
�µe

(if the operator is induced at tree level）

(if the operator is generated at loop level）

The search is sensitive to new physics 
with TeV scale and LFV!

example: large extra dimension 

example: SUSY

:new physics scale

Is the LFV searches sensitive to TeV scale physics?

 For loop diagrams,

> sensitive to TeV energy scale with reasonable mixing

(m2
~L
)21 ∼

3m2
0 + A2

0

8π2
h

2
t VtdVtsln

MGUT

MRsslepton mixing  
(from RGE)

SUSY-GUT model

SUSY neutrino 
seesaw model(m2

L)21 �
3m2

0 + A2
0

8�2
h2

�U31U32ln
MGUT

MR

example diagram for SUSY (~TeV)

Physics at about 1016 GeV 

✴ anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102

W̃

�̃µ

µ

�

�̃e

e

µ� e��
+
→ e

+
γ
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SPS 1a

mN1 = 1010 GeV, mN2 = 1011 GeV

mν1 = 10-5 eV
0 ≤ |θ1| ≤ π/4
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Figure 14: Correlation between BR(µ → e γ) and BR(τ → µ γ) as a function of mN3
, for SPS

1a. The areas displayed represent the scan over θi as given in eq. (4.3). From bottom to top, the
coloured regions correspond to θ13 = 1◦, 3◦, 5◦ and 10◦ (red, green, blue and pink, respectively).
Horizontal and vertical dashed (dotted) lines denote the experimental bounds (future sensitivities).

Given that, as previously emphasised, µ → e γ is very sensitive to θ13, whereas this is not

the case for BR(τ → µ γ), and that both BRs display the same approximate behaviour

with mN3
and tan β, we now propose to study the correlation between these two observ-

ables. This optimises the impact of a θ13 measurement, since it allows to minimise the

uncertainty introduced from not knowing tanβ and mN3
, and at the same time offers a

better illustration of the uncertainty associated with the R-matrix angles. In this case,

the correlation of the BRs with respect to mN3
means that, for a fixed set of parameters,

varying mN3
implies that the predicted point (BR(τ → µ γ), BR(µ → e γ)) moves along

a line with approximately constant slope in the BR(τ → µ γ)-BR(µ → e γ) plane. On the

other hand, varying θ13 leads to a displacement of the point along the vertical axis. In

figure 14, we illustrate this correlation for SPS 1a, and for the previously selected mN3
and

θ1,2 ranges (c.f. eq. (4.3)). We consider the following values, θ13 = 1◦, 3◦, 5◦ and 10◦, and

only include the BR predictions allowing for a favourable BAU. In addition, and as done

throughout our analysis, we have verified that all the points in this figure lead to charged

lepton EDM predictions which are compatible with present experimental bounds. More

specifically, we have obtained values for the EDMs lying in the following ranges (in units

of e.cm):

10−39 ! |de| ! 2 × 10−35 , 6 × 10−37 ! |dµ| ! 1.5 × 10−32 , 10−34 ! |dτ | ! 4 × 10−31 .

(4.4)

For a fixed value of mN3
, and for a given value of θ13, the dispersion arising from

a θ1 and θ2 variation produces a small area rather than a point in the BR(τ → µ γ)-

BR(µ → e γ) plane. The dispersion along the BR(τ → µ γ) axis is of approximately one

– 29 –

Figure 12: Correlation between µ ! e� and µ ! e conversion in Ti as obtained from

a general scan over the LHT parameters. The shaded area represents the present (light)

and future (darker) experimental constraints. The solid blue line represents the dipole

contribution to R(µTi ! eTi).

from models like the MSSM in which the dipole operator, displayed by the blue line,

yields the dominant contribution to Br(µ� ! e�e+e�) [92, 93]. It is clear from Fig. 11

that an improved upper bound on µ ! e�, which should be available from the MEG

experiment in the next years (shown by the dark grey area in Fig. 11), and in particular

its discovery will provide important information on µ� ! e�e+e� within the model in

question.

Next in Fig. 12 we show the µ ! e conversion rate in titanium (Ti), as a function of

Br(µ ! e�). We observe that the correlation between these two modes is much weaker

than the one between µ ! e� and µ� ! e�e+e�. Consequently, the ratio of these

two rates may again di↵er significantly from the prediction obtained in models where

the dipole operator is dominant. Such a distinction is however not possible for some

regions of the LHT parameter space, where the a priori dominant Z0-penguin and box

contributions cancel due to a destructive interference in R(µTi ! eTi).

In order to quantify how naturally a suppression of the µ ! e� decay rate below

the present experimental bounds can be obtained, we consider how much fine-tuning is

necessary to fulfil this bound. We would like to remind the reader that the measure

of fine-tuning �
BG

defined in (5.1) indicates the sensitivity of a particular observable

with respect to a small change in the model parameters. It by no means allows to make

statements for instance about the structure of the mixing matrices or the mass spectrum

of the model, but only about how rapidly an observable changes in the neighborhood of

a particular parameter configuration. No more than that the BG fine-tuning indicates
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this experiment are included in Fig. 5. Both the !! 3"
and !! 3e modes at a super-B factory will constrain the
anarchic RS parameter space. The LHC also has sensitivity
to rare ! decays [30]; however, the projected sensitivities
are slightly weaker than the current B-factory constraints,
and have not been included. The expected sensitivities to
rare ! decays at a future linear collider are also weaker than
the limits set by the B-factories. Although the MKK !
1 TeV scales probed with !! l1 !l2l3 decays are lower
than those constrained by "" e conversion and "! 3e,
we stress that different model parameters are tested by each
set of processes.

B. Scan for the bulk Higgs field scenario

We now present the results of our scan over the bulk
Higgs parameter space. For the scan we set # # 0; we
present separately the # dependence of the most important
constraints.

We again begin by considering muon initiated processes.
The constraints from "! 3e and "" e conversion are
highly correlated, as we saw in the previous subsection.
Since the bounds from "" e conversion are stronger, we
focus on this and "! e$. We show in Fig. 6 scatter plots
of the predictions for BR$"! e$% and Bconv coming from
our scan of the RS parameter space, for the KK scales
MKK # 3, 5, 10 TeV. For "! e$ we include both the
current constraint from the Particle Data Group [24] and
the projected sensitivity of MEG [18]. The current bounds
from "! e$ are quite strong; from the MKK # 3 TeV

plot in Fig. 6, we see that only one parameter choice
satisfies the BR$"! e$% bound. This point does not sat-
isfy the "" e conversion constraint. We can estimate that
it would satisfy both bounds for MKK > 3:1 TeV. In our
scan over 1000 sets of model parameters the absolute
lowest scale allowed is thus slightly larger than 3 TeV.
Also, a large portion of the parameter set at both 5 and
10 TeV conflict with these bounds. We again find the need

FIG. 6 (color online). Scan of the "! e$ and "" e conversion predictions for MKK # 3, 5, 10 TeV and # # 0. The solid line
denotes the PDG bound on BR$"! e$%, while the dashed lines indicate the SINDRUM II limit on "" e conversion and the
projected MEG sensitivity to BR$"! e$%.

FIG. 7 (color online). Scan of the !! "$ and !! e$ pre-
dictions for MKK # 3 TeV and # # 0. The solid and dashed
lines are the current B-factory and projected super-B factory
limits, respectively.

AGASHE, BLECHMAN, AND PETRIELLO PHYSICAL REVIEW D 74, 053011 (2006)

053011-12

Given that both ‘i ! ‘j! and !a" ! "g" # gSM
" $=2 are

generated by dipole operators, it is natural to establish a
link between them. To this purpose, we recall the dominant
contribution to !a" is also provided by the chargino
exchange and can be written as

 !a" ! #
#2

4$
m2
"

!
"M2

m2
L

"g2c"M2
2=M

2
~‘
;"2=M2

~‘
$

"M2
2 #"2$ tan%;

(17)

with gc2"x; y$ defined as fc2"x; y$ in terms of

 gc2"a$ !
"3# 4a% a2 % 2 loga$

"a# 1$3 : (18)

It is then straightforward to deduce the relation

 

B"‘i ! ‘j!$
B"‘i ! ‘j&‘i "&‘j$

! 48$3#
G2
F

#!a"
m2
"

$
2

&
#f2c"M2

2=M
2
~‘
;"2=M2

~‘
$

g2c"M2
2=M

2
~‘
;"2=M2

~‘
$

$
2
j'ijLLj2:

(19)

To understand the relative size of the correlation, in the
limit of degenerate SUSY spectrum we get

 

B"‘i ! ‘j!$ '
# !a"

20& 10#10

$
2

&
% 1& 10#4j'12

LLj2 ("! e);
2& 10#5j'23

LLj2 ((! "):
(20)

A more detailed analysis of the stringent correlation be-

tween the ‘i ! ‘j! transitions and !a" in our scenario is
illustrated in Fig. 6. Since the loop functions for the two
processes are not identical, the correlation is not exactly a
line; however, it is clear that the two observables are
closely connected. We stress that the numerical results
shown in Fig. 6 have been obtained using the exact for-
mulas reported in Ref. [41] for the supersymmetric con-
tributions to both B"‘i ! ‘j!$ and !a" (the simplified
results in the mass-insertion approximations in Eqs. (15)–
(19) have been shown only for the sake of clarity). The
inner dark-gray (red) areas are the regions where the
B-physics constraints are fulfilled. In our scenario the
B-physics constraints put a lower bound on MH and there-
fore, through the funnel-region relation, also on M1;2 (see
Figs. 3 and 4). As a result, the allowed ranges for !a" and
B"‘i ! ‘j!$ are correspondingly lowered. A complemen-
tary illustration of the interplay of B-physics observables,
dark-matter constraints, !a", and LFV rates—within our
scenario—is shown in Fig. 7.9

The normalization j'12
LLj ! 10#4 used in Figs. 6 and 7

corresponds to the central value in Eq. (14) for c& ! 1 and
M&R ! 1012 GeV. This normalization can be regarded as a
rather natural (or even pessimistic) choice.10 As can be

FIG. 6 (color online). Expectations for B""! e!$ and B"(! "!$ vs !a" ! "g" # gSM
" $=2, assuming j'12

LLj ! 10#4 and j'23
LLj !

10#2. The plots have been obtained employing the following ranges: 300 GeV * M~‘ * 600 GeV, 200 GeV * M2 * 1000 GeV,
500 GeV * " * 1000 GeV, 10 * tan% * 50, and setting AU ! #1 TeV, M~q ! 1:5 TeV. Moreover, the GUT relations M2 ' 2M1

and M3 ' 6M1 are assumed. The inner (red) areas correspond to points within the funnel region which satisfy the B-physics
constraints listed in Sec. III B [B"Bs ! "%"#$< 8& 10#8, 1:01<RBs! < 1:24, 0:8<RB(& < 0:9, !MBs ! 17:35+ 0:25 ps#1].

9For comparison, a detailed study of LFV transitions imposing
dark-matter constraints—within the constrained MSSM with
right-handed neutrinos—can be found in Ref. [42].

10For M&R , 1012 GeV other sources of LFV, such as the
quark-induced terms in grand unified theories cannot be ne-
glected [43]. As a result, in many realistic scenarios it is not
easy to suppress LFV entries in the slepton mass matrices below
the 10#4 level [38].
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G.Isidori, et al., PRD75(2007)115019

M.Blanke et al., Acta Phys.Polon.B41(2010)657

S. Antusch, et al., JHEP11(2006)090

K.Agashe, et al., PRD74(2006)053011

SUSY-Seesaw
SUSY-GUT

Little Higgs Extra dimensions

θ13 ~ 9°
(Daya Bay, RENO, Double 
Chooz, T2K, MINOS)

little Higgs model  

● Extra-dimensional models

“Anarchic” Randall-Sundrum model

Agashe, Blechman, Petriello

CLFV Predictions (for μ→eγ and µ-e conversion)
by Extra Dimension Models

extra dimension modelextra dimension model

CLFV Prediction (for µ-e conversion) 
by CMSSM (Supersymmetric Models)André de Gouvêa Northwestern
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B(µTi! eTi)⇥ 1012 tan � = 10

µ! e conversion is at least as sensitive as µ! e�

SO(10) inspired model.

remember B scales with y2.

B(µ! e�) /M2
R[ln(MPl/MR)]2

[Calibbi, Faccia, Masiero, Vempati, hep-ph/0605139]

October 14, 2009 CLFV

Calibbi, Faccia, Masiero, 
Vempati, hep-ph/0605139]

experiment projection
BR~<6x10-17

experimental bound
BR~10-12

104

SUSY model

104

8

FIG. 1: The dependence of B(µ ! e + �) on M1 in the case of NH (left panel) and IH (right panel) light neutrino
mass spectrum, for i) y = 0.001 (blue �), ii) y = 0.01 (green +), and iii) y = 0.1 (red ⇥). The horizontal dashed line
corresponds to the MEGA bound [33], B(µ ! e + �)  1.2 ⇥ 10�11. The horizontal dot-dashed line corresponds to
B(µ ! e+ �) = 10�13, which is the prospective sensitivity of the MEG experiment [34].

It is not di�cult to show that, for fixed values of the phases ↵
21

and �, |Uµ2 + iUµ1|2 has a minimum for

sin ✓
13

=
cos � sin ↵21

2

� 3 cos ↵21
2

sin �

3 + 2
p
2 sin ↵21

2

. (3.19)

At the minimum, using eqs. (3.18) and (3.19), we get:

min
�|Uµ2 + iUµ1|2

�

=

�

3 cos � cos ↵21
2

+ sin � sin ↵21
2

�

2

6
�

3 + 2
p
2 sin ↵21

2

� . (3.20)

We will find next for which values of the CP violating phases � and ↵
21

this lower bound is equal to zero
and if the resulting ✓

13

, obtained from eq. (3.19), is compatible with the existing limits from the neutrino
oscillation data. We have min(|Uµ2 + iUµ1|2) = 0 if the Dirac and Majorana phases � and ↵

21

satisfy
the following conditions: tan � tan ↵21

2

= �3 and sgn(cos � cos ↵21
2

) = �sgn(sin � sin ↵21
2

). Taking cos � > 0
(cos � < 0) and using tan � = �3/ tan(↵

21

/2) in eq. (3.19) we get:

sin ✓
13

= sgn(cos �)

q

9 + tan2 ↵21
2

3 + 2
p
2 sin ↵21

2

cos
↵
21

2
. (3.21)

The solution (3.21) is compatible with the 3� upper limit of the CHOOZ mixing angle (see Table 1). In
general, one can always find a viable pair of CP violating phases ↵

21

and � satisfying the relations given
above in order to set the r.h.s. of eq. (3.20) equal to zero, if the mixing angle ✓

13

is su�ciently large, namely,
if sin ✓

13

> 3 � 2
p
2 ⇠= 0.17. More precisely, one finds, e.g. that |Uµ2 + iUµ1|2 ' 3.52 ⇥ 10�8 (2.43 ⇥ 10�6)

for s
13

' 0.2 (0.17), ↵
21

' 2.732 (⇡) and � ' 5.725 (10�3).
In order to interpret the results presented in Fig. 1, it proves convenient to use the analytic expressions

of B(µ ! e + �) in terms of the low energy neutrino parameters, the neutrino Yukawa coupling and the
RH neutrino mass, eqs. (3.6)�(3.11). Taking for concreteness sin2 ✓

23

⇠= 1/2, sin2 ✓
12

⇠= 1/3 and using

low-energy seesaw model



Why Muons ?



Why muons, not taus ?

# of muons 
~ O(1015)/year

# of taus 
~ O(109)/year

# of muons 
~ O(1018)/year



Muon CLFV



Experimental Limits
at Present and in the Future

process present limit future
µ→eγ <4.2 x 10-13 <10-14 MEG at PSI
µ→eee <1.0 x 10-12 <10-16 Mu3e at PSI

µN→eN (in Al) none <10-16 Mu2e /  COMET
µN→eN (in Ti) <4.3 x  10-12 <10-18 PRISM

τ→eγ <1.1 x 10-7 <10-9 - 10-10 superKEKB
τ→eee <3.6 x 10-8 <10-9 - 10-10 superKEKB

τ→µγ <4.5 x 10-8 <10-9 - 10-10 superKEKB

τ→µµµ <3.2 x 10-8 <10-9 - 10-10 superKEKB/LHCb

µN→µN→µN eN (in Al) none <10-16 Mu2e /  COMET

X10-4



Why Muon to Electron Conversion ?



What is Muon to Electron Conversion?

1s state in a muonic atom

nucleus

µ−

muon decay in orbit

nuclear muon capture

µ− + (A, Z)→νµ + (A,Z −1)

µ− → e−νν 

nucleus

Neutrino-less muon 
nuclear capture

µ− + (A, Z)→ e− + (A,Z )

Event Signature : 
a single mono-energetic 
electron of 105 MeV
Backgrounds:
(1) physics backgrounds
(2) beam-related backgrounds 
(3) cosmic rays, false tracking

∝ Z5coherent process



Physics Sensitivity Comparison : 

μ→eγ vs. μ-e conversion 

Effective theory

Electromagnetic vertex

µ e
�

q q

?

Often gives large Br(µ! e�)

Contact interaction:

May be no µ! e� signal

Relative rates of conversion and µ! e� are model dependent
Handle to discriminate New Physics models

Parametrization: L
CLFV

=
mµ

(1 + ) ⇤2 µ̄
R

�µ⌫e

L

F

µ⌫ +


(1 + ) ⇤2 µ̄
L

�µe

L

(ū
L

�µ
u

L

+ d̄

L

�µ
d

L

)

⇤: mass scale, : importance of contact term
Andrei Gaponenko 6 CIPANP-2012

Photonic (dipole) interaction

tree levels

Effective theory

Electromagnetic vertex

Often gives large Br(µ! e�)

Contact interaction:
µ e

q q
?

May be no µ! e� signal

Relative rates of conversion and µ! e� are model dependent
Handle to discriminate New Physics models

Parametrization: L
CLFV

=
mµ

(1 + ) ⇤2 µ̄
R

�µ⌫e

L

F

µ⌫ +


(1 + ) ⇤2 µ̄
L

�µe

L

(ū
L

�µ
u

L

+ d̄

L

�µ
d

L

)

⇤: mass scale, : importance of contact term
Andrei Gaponenko 6 CIPANP-2012

Contact interaction

μ-e conversion sensitive to many new physics

LCLFV =
1

1 + �

mµ

�2
µ̄R�µ�eLFµ� +

�

1 + �

1
�2

(µ̄L�µeL)(q̄L�µqL)µ ! e�

LCLFV =
1

1 + �

mµ

�2
µ̄R�µ�eLFµ� +

�

1 + �

1
�2

(µ̄L�µeL)(q̄L�µqL)
µN ! eN



Experimental Comparison :

μ→eγ and μ-e Conversion 

Beam background challenge
beam 
intensity

μ→eγ continuous 
beam accidentals

detector 
resolution limited

μ→eee continuos 
beam accidentals

detector  
resolution limited

μ-e 
conversion

pulsed 
beam

beam-related beam 
background

no limitation



μ-e Conversion : Target dependence  
(discriminating effective interaction)

R. Kitano, M. Koike and Y. 
Okada, Phys. Rev. D66, 096002 
(2002)
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Figure 3: Target dependence of the µ → e conversion rate in different single-operator
dominance models. We plot the conversion rates normalized to the rate in Aluminum
(Z = 13) versus the atomic number Z for the four theoretical models described in the
text: D (blue), S (red), V (γ) (magenta), V (Z) (green). The vertical lines correspond to
Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).

proton scattering data exists, the uncertainty on the ratios of conversion rates becomes
negligible. This point is illustrated by Table 1, where we report the detailed breakdown of
uncertainties in the ratios Bµ→e(Ti)/Bµ→e(Al) and Bµ→e(Pb)/Bµ→e(Al). For other targets,
the uncertainty induced by neutron densities never exceeds 5% [6]. The conclusions of this
exercise are that:

• The theoretical uncertainties (scalar matrix elements and neutron densities) largely
cancel when we take a ratio.

• As evident from Fig. 3, a realistic discrimination among models requires a measure
of Bµ→e(Ti)/Bµ→e(Al) at the level of 5% or better, or alternatively a measure of
Bµ→e(Pb)/Bµ→e(Al) at the 20% level. These are two cases that well represent the
trend in light and heavy target nuclei.

11

normalised at Al scalar interaction

dipole interaction

vector interaction

(with z boson)

vector interaction

(with photon)



Backgrounds for µ-e conversion

beam-related 
backgrounds

Radiative pion capture (RPC)

Beam electrons

Muon decay in flights

Neutron background

Antiproton induced background

intrinsic physics 
backgrounds

Muon decay in orbit (DIO)

Radiative muon capture (RMC)

neutrons from muon nuclear capture

Protons from muon nuclear capture

cosmic-ray and other 
backgrounds

Cosmic-ray induced background

False tracking



Signal of µ-e Conversion
and Normal Muon Decays

105 MeV52.8 MeV
electron momentum spectrum

normal muon decay

µ-e conversion

µ-e conversion and 
muon Michel decays 
are well separated.

μ→eee μ→eγ



Muon Decay in OrbitSpectrum of “μ-e conversion”
17

• Intrinsic Background 
DIO spectrum has longer tail up to 105 MeV  
→ require high resolution to separate the tail and signal

• Beam-related Background 
radioactive pion capture, muon decay in flight and so on
  → require pulsed beam and good proton extinction

DIO



Intrinsic Physics Background: 
Muon Decay in Orbit (DIO)

NuFact03@Colombia University2003/6/6

Expected background source  - Muon Decay in Orbit -Expected background source  - Muon Decay in Orbit -

Muon decay in orbit (µ(Eµe-Ee)5)

®  Ee > 103.9 MeV
®  DEe = 350 keV

®  NBG ~ 0.05 @ R=10-18

npcqclr�jgkgr

KCAM�em_j

NPGKC�em_j

qgel_j

• reduce the detector hit rate
Instantaneous rate : 1010muon/pulse

• precise measurement of the electron energy

Background Rate comment

Muon decay in orbit 0.05 energy reso 350keV(FWHM)

Radiative muon capture 0.01 end point energy for Ti=89.7MeV

Radiative pion capture 0.03 long flight length in FFAG, 2 kicker

Pion decay in flight 0.008 long flight length in FFAG, 2 kicker

Beam electron negligible kinematically not allowed

Muon decay in flight negligible kinematically not allowed

Antiproton negligible absorber at FFAG entrance

Cosmic-ray < 10^-7 events low duty factor

Total 0.10

10-16 goal

10-18  goal

∝ (∆E)5

COMET goal

PRISM goal   
Good momentum 

resolution is needed.

the DIO electrons is presented in Section 17.2. In this study, the momentum cut of 103 : 6 MeV = c <
Pe < 106: 0 MeV = c, where Pe is the momentum of electron, is determined as shown in Fig. 107 [61].
According to this study, the contamination from DIO electrons of 0.01 events is expected for a single
event sensitivity of the � −N → e−N conversion of 3: 1× 10−15.

Momentum [MeV/c]
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Figure 106: Left: Distributions of the reconstructed � −N → e−N conversion signals and reconstructed DIO
events. The vertical scale is normalized so that the integrated area of the signal is equal to one event with its
branching ratio of B(� N → eN) = 3: 1× 10−15. Right: The integrated fractions of the � −N → e−N conversion
signals and DIO events as a function of the low side of the integration range and the high side of the integration
range is 106 MeV/c. The momentum window for signals is selected to be fro 103.6 MeV/c to 106 MeV/c so
that the DIO contamination would be 0.01 events.

16.1.4 Time window for signals

The muons stopped in the muon-stopping target have the lifetime of a muonic atom. The lifetime
of muons in aluminium is about 864 nanoseconds. The � −N → e−N conversion electrons can be
measured between the proton pulses to avoid beam-related background events. However, some beam-
related backgrounds would come late after the prompt timing, such as pions in a muon beam. There-
fore, the time window for search is chosen to start at some time after the prompt timing. As discussed
in Section 16.2, the starting time of time window of measurement of 700 nanoseconds is assumed,
although it would be optimized in the future offline analysis.

The acceptance due to the time window cut, εtime, can be given by,

εtime =
Ntime

Nall
; (9)

Ntime =
n∑

i=1

∫ t2+Tsep(i−1)

t1+Tsep(i−1)
N(t)dt; (10)

where Nall and Ntime are the number of muons stopped in the target and the number of muons which
can decay in the window, respectively, Tsep is the time separation between the proton pulses, t1 and t2
are the start time and the close time of the measurement time window, respectively, and n indicates
the window for the nth pulse. The time distribution of the muon decay timing N(t) is obtained by
Monte Carlo simulations. In our case, t1 and t2 are 700 nsec and 1100 nsec, respectively and Tsep is
1.17 � sec, and εtime of 0.3 is obtained.

16.1.5 Net Acceptance of signals

it is assumed that the efficiencies of trigger, DAQ, and reconstruction efficacy are about 0.8 for each.
From these, the net acceptance for the � −N → e−N conversion signal, A � -e = 0 : 043 is obtained. The
breakdown of the acceptance is shown in Table 24.
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B(µN ! eN)  10�16

In order to make a new-generation experiment to 
search for µ-e conversion …



μ

Principle of Measurement

of µ-e Conversion

μ
μ

μ

μ
μ

μ
μμ

e

A total number of muons is the key for success.

COMET：1018 muons (past exp. 1014 muons)

muon stopping target

(note: 1010 sec=1000 years needed at PSI.)



Science
素粒子の一つであるミューオンを世
界最高の効率で生成する装置
「MuSIC」。宇宙の始まりに何が起
こったのか、宇宙はどのような法則で
成り立っているのかを、大量のミュー
オンと最新技術を駆使して研究する

062 063

Osaka University

理学部は医学部とともに1931（昭和6）
年、大阪大学発足と同時に創設された最も
伝統ある学部です。当時、日本の産業の中
枢であった大阪の地には、模倣的な工業か
ら脱皮するには「基礎的純正理化学」の力
によらなければならない、という先見性と危
機感がありました。そうした時代と地域の要
請から大阪大学理学部が設立されたので
す。創設に際しては、政府の援助は受け
ず、設立基金や寄付金などすべて地元の
負担によって誕生に至ったとされています。
数学、物理、化学の3学科からなる理学

自然の中には不思議がいっぱいあります。その不思議に魅せ
られ、不思議を解き明かそうとする人たちが数学や物理､化
学、生物など自然科学の基礎となる自然法則を見つけ出して
きました。その自然法則を基本としながら、新たな不思議の扉
を開いていくのが理学部の目指すところです。
科学技術の進歩によって、人類の生活は豊かになってきまし

た。インターネットの普及によって情報の国境が消え、生命科
学の進展によって、これまで不治といわれた病気が治療できる
ようにもなってきました。このようなハイテク、バイオ、情報社
会を支えているのは直接的には技術ですが、その技術は理学
部領域の研究成果である基礎科学の力がなければ成り立たな
いものなのです。
具体的な例を挙げましょう。火星上の探査機に指令を正確に

理学部の歩みと概要

◉世界的で独創性豊かな
　研究者集団

自然の法則から
新たな不思議の扉を開く

●数学科 ●物理学科
●化学科 ●生物科学科

未
知
の
法
則
に

迫
る

理学部

部は当時、世界的に著名な物理学者だっ
た初代総長、長岡半太郎博士の創設の理
念によって発展の基礎が築かれました。権
威にとらわれない実力第一主義の教員選
考は今も受け継がれ、出身大学も多様なこ
とから、学閥意識のない自由で活力ある雰
囲気を作り出す基になっています。
理学部はノーベル賞受賞者の湯川秀樹
博士、「八木アンテナ」の発明で有名な八
木秀次博士ら多くの優れた研究者の手に
よって広い視野での基礎科学の発展に貢
献してきましたが、1949年に生物学科、
59年に高分子学科、91年には宇宙・地球
科学科が新設されました。その後、大学院
重点化への動きから理学研究科の専攻が
整理統合され、大学院の入学定員が大幅

送ることができる技術は150年以上も前に天才数学者、ガロ
アが考え出した理論（有限体）が応用されています。情報社会
を支える各種素子の開発には、アインシュタインの光量子仮説
やプランクのエネルギー量子論が大きく貢献しています。さら
には、遺伝子治療やゲノム創薬はワトソンとクリックのDNAの
構造解明がなければ、できなかったことです。
しかし、ガロアやアインシュタイン、ワトソンとクリックらは彼
らの研究成果が21世紀の科学技術をこれほどまでに発展させ
る原動力になると、当時は想像したでしょうか。いわんや、
ニュートンやメンデルら現代科学の基礎を築いた人たちは考
え及ばなかったでしょう。
現在の社会はこれまでの基礎科学の成果の上にのって発展

してきた先端の技術に目を奪われがちです。基礎となる理論
はすでにすべて解明されていると思われている人も多いので
はないでしょうか。
しかし、自然はそれほど簡単ではありません。細胞１つとって
みても、そのメカニズムのほんの一部がわかっているに過ぎま
せん。数学の分野でも解決されていない定理があり、素粒子論
も課題が山ほどあります。宇宙の成り立ちも未知の部分が限り
なくあります。理学部が挑まなければならない分野はまだまだ
無限にあるのです。
そして、これまでの成果をもとに新たな自然科学の法則を見

つけ出すことによって、地球環境問題の解決につながるなど人類
の未来に貢献することができるのではないかと考えています。

に増加。その際、理学部の学科も現在の4
学科になりました。96年度からの新体制は
国際的にも誇れる高度で、真に独創性豊か
な理学研究者集団として、世界的にも独自
な個性を持つ教育研究を目指すものです。
理学部関連の附属施設としては、構造
熱科学研究センター、原子核実験施設が
あり、国際的に高く評価される特色ある研
究活動を行っています。このほか産業科学
研究所、蛋白質研究所、核物理研究セン
ターなど学内の研究所等で、その設立に理
学部が重要な役割を果たしたものも少なく
ありません。そうした研究所やセンターに属
する多くの教員は理学部と密接な協力関
係を保っています。

◉
理
学
部

Science

12年1月2日月曜日

MuSIC at RCNP, Osaka University
- Highly Intense Muon Source -

Muon Science Intense Channel (>2011)

04/08/2011

The current situation

Proton beam line

14

04/08/2011

Muon lifetime measurement

24

Slide courtesy of Tran Hoai Nam, Osaka University 
04/08/2011

X-ray spectrum (Mg target)

25

e+/e- Annihilation 

Muonic Mg decay

Slide courtesy of Tran Hoai Nam, Osaka University 

µ+ : 3x108/s for 400W
µ- : 1x108/s for 400W

MuSIC muon yields

3.5T and graphite target

muon/proton~x1000



Production and Collection of  
Pions and Muons 

Conventional muon beam line 

proton beam

Capture magnets

muons

J-PARC MUSE 
proton beam  
   -1000kW 
target 
   graphite 
   t20mm 
   φ70mm

SuperOmega 
Ω:400mSrproton beam loss 

< 5%

More efficient

proton beam

Capture solenoid

muons

to a beam dump

Collect pions and muons by 
3.5T solenoidal field

MuSIC 
proton beam  
   -0.4kW 
target 
   graphite 
   t200mm 
   φ40mm

Large solid angle & thick target

Transport solenoid

MuSIC,COMET,PRISM, 
Neutrino factory, 

Muon collider



Improvements for 

Background Rejection

 based on the MELC proposal at Moscow Meson Factory

Muon DIO 
background

low-mass trackers in 
vacuum & thin target

improve 
electron energy 
resolution

curved solenoids for 
momentum selection

Muon DIF 
background

eliminate 
energetic muons 
(>75 MeV/c)

Beam-related 
backgrounds

Beam pulsing with 
separation of 1μsec

measured 
between beam 
pulses

proton extinction = #protons between pulses/#protons in a pulse < 10-9



COMET at J-PARC



Mu2e Detector 

Lindgren – Fermilab Snowmass PAC, June 21-25, 2011 15 

Proton beam hits production target in 
Production Solenoid. 
Pions captured and accelerated towards 
Transport Solenoid by graded field. 
Pions decay to muons. 

Transport solenoid performs sign and momentum 
selection. 
Eliminates high energy negative particles, positive 
particles and line-of-site neutrals. 

Muons captured in stopping target. 
Conversion electron trajectory measured 
in tracker, validated in calorimeter. 
Cosmic Ray Veto surrounds Detector 
Solenoid. 

Mu2e at Fermilab

The Mu2e experiment
Muon to electron conversion at Fermilab

Andrei Gaponenko

Fermilab

CIPANP-2012

http://mu2e.fnal.gov

Single-event sensitivity : (2.5±0.3)x10-17

Total background : (0.36±0.10) events
Expected limits : < 6x10-17 @90%C.L.
Running time: 3 years (2x107sec/year)



COMET at J-PARC: E21

8GeV proton beam
5T pion 
 capture  
solenoid

3T muon transport 
(curved solenoids)

muon stopping 
target

electron tracker  
and calorimeter

electron  
transport

Physics sensitivity : (1.0-2.6)x10-17

Total background : 0.32 events
Expected limits : < 6x10-17@90%CL
Running time: 1 years (2x107sec)

COMET=COherent Muon to Electron Transition



COMET Collaboration

182 collaborators 
37 institutes, 15 countries

S.Mihara, J-PARC PAC Meeting, 16/Mar/2012

COMET Phase-I
Proto-collaboration

• 107 collaborators
• 25 institutes
• 11 countries

3
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University Technology Malaysia

T. Numao
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* Contact Person

COMET Collaboration Increasing...
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Kyoto University Research Reactor Institute, Kyoto, Japan

C.V. Tao
College of Natural Science, National Vietnam University, Vietnam

M. Aoki, I.H. Hasim T. Hayashi, Y. Hino, T. Iwami, T. Itahashi, S. Ito, Y. Kuno∗,
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Osaka University, Osaka, Japan

M. Koike, J. Sato
Saitama University, Japan

D. Bryman
University of British Columbia, Vancouver, Canada
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University College London, UK
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University of Malaya, Malaysia
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University of Oxford, UK
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University Technology Malaysia

T. Numao
TRIUMF, Canada

* Contact Person

117 collaborators
27 institutes
12 countries

New members are
LPNHE, France

Kyushu University, Japan

182 collaborators 

Republic of Belarus
Рэспубліка Беларусь (Belarusian)
Республика Беларусь (Russian)

Flag National emblem

Anthem: 
Дзяржаўны гімн Рэспублікі Беларусь (Belarusian)

Dziaržaŭny himn Respubliki Bielaruś
(English: State Anthem of the Republic of Belarus)

Location of Belarus  (green)
)  –  [Legend]

Minsk
53°55!N 27°33!E

Belarusian
Russiana

Belarusian

83.7% Belarusians
8.3% Russians
3.1% Poles
1.7% Ukrainians
0.1% Jews
0.1% Armenians
0.1% Tatars
3.0% Other

Belarusian

Presidential republic[1][2]

Belarus
From Wikipedia, the free encyclopedia

This article is about the European country. For other uses, see Belarus (disambiguation).

MENU

The COMET Collaboration

R. Abramishvili11, G. Adamov11, R. Akhmetshin6, 31, V. Anishchik4, M. Aoki32,
Y. Arimoto18, I. Bagaturia11, Y. Ban3, A. Bondar6, 31, Y. Calas7, S. Canfer33, Y. Cardenas7,
S. Chen28, Y. E. Cheung28, B. Chiladze35, D. Clarke33, M. Danilov15, 26, P. D. Dauncey14,
J. David23, W. Da Silva23, C. Densham33, G. Devidze35, P. Dornan14, A. Drutskoy15, 26,
V. Duginov16, L. Epshteyn6, 30, P. Evtoukhovich16, G. Fedotovich6, 31, M. Finger8,
M. Finger Jr8, Y. Fujii18, Y. Fukao18, J-F. Genat23, E. Gillies14, D. Grigoriev6, 30, 31,
K. Gritsay16, E. Hamada18, R. Han1, K. Hasegawa18, I. H. Hasim32, O. Hayashi32,
Z. A. Ibrahim24, Y. Igarashi18, F. Ignatov6, 31, M. Iio18, M. Ikeno18, K. Ishibashi22,
S. Ishimoto18, T. Itahashi32, S. Ito32, T. Iwami32, X. S. Jiang2, P. Jonsson14, V. Kalinnikov16,
F. Kapusta23, H. Katayama32, K. Kawagoe22, N. Kazak5, V. Kazanin6, 31, B. Khazin6, 31,
A. Khvedelidze16, 11, T. K. Ki18, M. Koike39, G. A. Kozlov16, B. Krikler14, A. Kulikov16,
E. Kulish16, Y. Kuno32, Y. Kuriyama21, Y. Kurochkin5, A. Kurup14, B. Lagrange14, 21,
M. Lancaster38, M. J. Lee12, H. B. Li2, W. G. Li2, R. P. Litchfield38, T. Loan29,
D. Lomidze11, I. Lomidze11, P. Loveridge33, G. Macharashvili35, Y. Makida18, Y. Mao3,
O. Markin15, Y. Matsumoto32, T. Mibe18, S. Mihara18, F. Mohamad Idris24, K. A. Mo-
hamed Kamal Azmi24, A. Moiseenko16, Y. Mori21, M. Moritsu32, E. Motuk38, Y. Nakai22,
T. Nakamoto18, Y. Nakazawa32, J. Nash14, J. -Y. Nief7, M. Nioradze35, H. Nishiguchi18,
T. Numao36, J. O’Dell33, T. Ogitsu18, K. Oishi22, K. Okamoto32, C. Omori18,
T. Ota34, J. Pasternak14, C. Plostinar33, V. Ponariadov45, A. Popov6, 31, V. Rusinov15, 26,
A. Ryzhenenkov6, 31, B. Sabirov16, N. Saito18, H. Sakamoto32, P. Sarin13, K. Sasaki18,
A. Sato32, J. Sato34, Y. K. Semertzidis12, 17, D. Shemyakin6, 31, N. Shigyo22, D. Shoukavy5,
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COMET Proton Beamline



Time Structure of Measurement 

in COMET

Tau 2010 13th September 2010Ajit Kurup Page 11

The COherent Muon to Electron Transition 
(COMET) experiment

Proton Beam for COMET

• Background rate needs to be low in order 
to achieve sensitivity of <10-16.

• Extinction is very important.  

– Without sufficient extinction, all 
processes in prompt background 
category could become a problem.

0.7sSpill time

5.3x105Bunches per Spill

1.2x108Protons per Bunch

100nsBunch Length

10-9Extinction

1.3 µsBunch Separation

Bunch Structure

• Muonic lifetime is dependent on 
target Z.  For Al lifetime is 880ns.

Proton Beam for COMET

A lifetime of a 
muonic atom in 

aluminium 
~ 880 sec



Pion Capture in Solenoids

O(1011) stopped µ-/sec   
for 50 kW protons  

note: dependent on 
solenoid field and aperture, 
proton target material.

proton target in a 
solenoidal field (~5 T)

a long proton target 
(1.5~2 interaction length) 
of heavy material

high muon yield



Particle Trajectories 
in Curved Solenoid

B (perpendicular to screen)

Electric field 
(centrifugal force)

vertical shifting

Electric field 
(centrifugal force)

B (perpendicular to screen)

dipole magnetic field  
(parallel to drift direction)

keep particular momentum  
on bending plane
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Mu2e COMET

muon  
beam line

2x 90  bends 
(opposite direction)

2x 90  bend  
(same direction)

electron  
spectrometer straight solenoid curved solenoid

COMET Solenoids and Detectors
for the CDR
version 090609.001

Proton beam
Pion production target Radiation shield

Muon stopping target Beam blocker

DIO blocker

Beam collimator

Calorimeter Tracker

Late-arriving particle tagger

Capture solenoid

Muon beam transport solenoid

Detector solenoid

Muon target solenoid

Curved sepctrometer solenoid

Matching solenoid

Mu2e vs. COMET
Proton beam

Beam collimator

Late-arriving particle tagger

Muon beam transport solenoid

Select low 
momentum 

muons

eliminate 
muon decay  

in flight

Muon stopping target Beam blocker

DIO blocker

Curved sepctrometer solenoid

Selection of  
100 MeV 
electrons

eliminate low 
energy events to 

make the detector 
quiet.

eliminate protons 
from nuclear muon 

capture.



COMET Detectors

in vacuum under  
1T magnetic field 

(# of straw stations  
is not determined)ECAL Straw Tracker



• Single event sensitivity


• Nμ is a number of stopping 
muons in the muon stopping 
target. It is 2x1018 muons.


• fcap is a fraction of muon 
capture, which is 0.6 for 
aluminium.


• Ae is the detector acceptance, 
which is 0.04～0.08.

COMET Signal Sensitivity (/2x107 sec)

B(µ− + Al → e
− + Al) ∼

1

Nµ · fcap · Ae

,

total protons 
muon transport efficiency 
muon stopping efficiency

8.5x1020 
0.008 

0.3
# of stopped muons 2.0x1018

B(µ� + Al⇥ e� + Al) = 3.3� 10�17

B(µ� + Al⇥ e� + Al) < 7� 10�17 (90%C.L.)
2.6
6



Background Rates11.2. BACKGROUND REJECTION 171

Table 11.9: Summary of Estimated Backgrounds.

Radiative Pion Capture 0.05
Beam Electrons < 0.1‡

Muon Decay in Flight < 0.0002
Pion Decay in Flight < 0.0001
Neutron Induced 0.024
Delayed-Pion Radiative Capture 0.002
Anti-proton Induced 0.007
Muon Decay in Orbit 0.15
Radiative Muon Capture < 0.001
µ− Capt. w/ n Emission < 0.001
µ− Capt. w/ Charged Part. Emission < 0.001
Cosmic Ray Muons 0.002
Electrons from Cosmic Ray Muons 0.002
Total 0.34

‡ Monte Carlo statistics limited.

11.2.5 Summary

Table 11.9 shows a summary of estimated backgrounds. The total number of background
event is 0.3.

beam-related prompt 
backgrounds

intrinsic physics 
backgrounds

beam-related delayed 
backgrounds

cosmic-ray and other 
backgrounds

Expected background events are about 0.34.



New Optimization 

on COMET Physics Sensitivity

Phase-II Simulations, 9 Jan. 2016 Ben Krikler: bek07@imperial.ac.uk10

Muon Beam
COMET Phase-II 

SES sensitivity / 2x107 sec = 2.6 x10-17

Mu2e 
SES sensitivity / 2x107 sec = 7.5 x10-17

Ph.D. 
thesis by B. 

Krikler (Imperial) 
and a work by 

N.Tran (PD, 
Osaka) COMET Phase-II 

SES sensitivity / 2x107 sec = 1.0 x10-17



Why COMET, not Mu2e ?

Sensitivity / 2x107 sec  
= 7.5 x10-17

Sensitivity / 2x107 sec  
= 1.0 x10-17

COMET Solenoids and Detectors
for the CDR
version 090609.001

Proton beam
Pion production target Radiation shield

Muon stopping target Beam blocker

DIO blocker

Beam collimator

Calorimeter Tracker

Late-arriving particle tagger

Capture solenoid

Muon beam transport solenoid

Detector solenoid

Muon target solenoid

Curved sepctrometer solenoid

Matching solenoid

Mu2e COMET

proton beam ~ 8kW proton beam ~ 56kW



COMET Phase-I



COMET Staged Approach (2012~)
Comparison : COMET vs. Mu2e

Stopping
Target

Production 
Target 

Detector Section

Pion-Decay and
Muon-Transport Section

Pion Capture Section
A section to capture pions with a large 
solid angle under a high solenoidal 
magnetic field by superconducting 
maget

A detector to search for 
muon-to-electron conver-
sion processes.

A section to collect muons from 
decay of pions under a solenoi-
dal magnetic field.

Detector Section

Pion-Decay and
Muon-Transport Section

Pion Capture Section
A section to capture pions with a large 
solid angle under a high solenoidal 
magnetic field by superconducting 
maget

A detector to search for 
muon-to-electron conver-
sion processes.

A section to collect muons from 
decay of pions under a solenoi-
dal magnetic field.

Stopping 
Target 

Production 
Target 

COMET @J-PARC Mu2e @FNAL

COMET Phase-I : 
physics run 2017-
BR(μ+Al→e+Al)<7x10-15 @ 90%CL
  *8GeV-3.2kW proton beam, 12 days
      *90deg. bend solenoid, cylindrical detector
      *Background study for the phase2

COMET Phase-II : 
physics run 2019-
BR(μ+Al→e+Al)<6x10-17 @ 90%CL
 *8GeV-56kW proton beam, 2 years
 *180deg. bend solenoid, bend spectrometer,  
   transverse tracker+calorimeter

Mu2e : 
physics run 2019-
BR(μ+Al→e+Al)<7x10-17 @ 90%CL
 *8GeV-8kW proton beam, 3 years
 *2x90deg. S-shape bend solenoid, 
  straw tracker+calorimeter

COMET Phase-I COMET Phase-II

6x109 stopped muon/sec  
with 3.2 kW



COMET Phase-I

pion production systemmuon transport systemdetector system

Single-event sensitivity : 3x10-15

Total background : 0.2 events
Expected limits : < 6x10-15 @90%CL
Running time: 150 days         



COMET Building at J-PARC
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Curved Solenoids for Muon Transport

Completed and Delivered!

March, 2015

6. Muon Beam

Figure 26: Overview of the COMET Phase-I Muon Beam line.

The COMET Phase-I muon beam line consists of a section for pion production and capture, a muon
transport section and a muon collimation section;. These three elements are descibed in the following
sections. At the ‘downstream’ end of the muon beam line is the detector solenoid. The schematic
layout of the COMET Phase-I muon beam line is shown in Fig. 26.

6.1 Pion Production

The COMET experiment uses negatively-charged low-energy muons, which can be easily stopped in
a suitable thin target. The low-energy muons are mostly produced by in-flight decay of low energy
pions. Therefore, the production of low energy pions is of major interest. Conversely, we wish to
eliminate high-energy pions, which could potentially cause background events.

6.1.1 Comparison of different hadron production codes

In order to study the pion and muon production yields, different hadron production simulations were
compared. The comparison of the backward yields of π− and µ− three metres away from the proton
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CyDet (Cylindrical Detector)

the detector to be read out.

A key feature of COMET is to use a pulsed beam that allows for elimination of prompt beam back-
grounds by looking only at tracks that arrive after the beam pulse. Therefore, a momentum tracking
device should be able to withstand a large  ux of particles during the burst of \ beam  ash" particles.
The time window for the measurement of electrons from � −N → e−N conversion in COMET will
start after several hundred nanosecond after the prompt.

The dimensions of the CyDet are shown in Fig. 91. The length of the CDC at the inner wall is
1490.3 mm. The inner wall of the CDC is made of a 500 � m thick carbon � bre reinforced plastic
(CFRP). The endplates will be conical in shape. The thickness of the endplate is about 10 mm to
rigidly support the feedthroughs. The outer wall of the CDC is made of CFRP which is 5 mm thick.
Trigger hodoscopes are placed at both the upstream and downstream ends of the CDC. In addition,
to reduce protons emitted from nuclear muon capture, a cylindrical absorber that is also made CFRP
will be placed concentrically with respect to the CDC axis. A preliminary thickness of the proton
absorber is 0.5 mm. 13 14
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Figure 91: The CyDet geometry used in the CyDet simulation studies in this TDR.

13All calculations presented in this report are based on this design except design of the inner wall and the absorber;
the inner wall and the absorber are modeled as a 100 � m thick aluminised Mylar and a 1 mm thick CFRP, respectively.
Total amount of mass is almost same. The thickness of absorber might change in further optimization in future.

14The geometry in Fig. 91 has no support structure of the trigger hodoscope, which is illustrated in Fig. 101. Opti-
mization of the geometry of the CDC including design of the collimator and the detector solenoid is underway. The � nal
geometry will be determined in near future considering engineering aspects.
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Various theoretical models predict experimentally ac-
cessible rates. One is the minimum supersymmetric
model (MSSM) with R-parity violation, which allows the
predicted branching ratio of !!!e" conversion of the
level of 10!12, since the relevant " and "! parameters
are not constrained (Babu and Mohapatra, 1995). Left-
right symmetric models with a low-mass WR also predict
a !!!e"-conversion branching ratio of 10!14, a value
estimated by the same authors.

2. Event signature and backgrounds

The energy of the positron from !!!e" conversion is
given by

E!e"#m!!B!!Erec!#Z!2

$m!!B!!#Z!2 , (148)

where #Z!2 is the difference in the nuclear binding en-
ergy between the (A ,Z) and (A ,Z!2) nuclei, with the
excitation energy in the final nucleus taken into account.
Usually, it is assumed that a large fraction of the final
nucleus could be in the giant-dipole-resonance state,
which has a mean energy of 20 MeV and a width of 20
MeV. Therefore the e" from !!!e" conversion would

have a broad momentum distribution corresponding to
the width of giant-dipole-resonance excitation.

The principal background is radiative muon capture
or radiative pion capture, followed by asymmetric e"e!

conversion of the photon. For some nuclei, the end point
of the radiative-muon-capture background in Eq. (142)
can be selected to be well separated from the signal. The
background from radiative pion capture must be re-
duced by the rejection of pions in the beam.

3. Experimental status of !!!e" conversion

The SINDRUM II Collaboration at PSI has reported
a search for the charge-changing process !!"Ti→e"

"Ca in muonic atoms (Kaulard et al. 1998). It was car-
ried out simultaneously with a measurement of !!"Ti
→e!"Ti. The e" momentum spectrum is shown in Fig.
32. The results are given separately for the transition to
the ground state and that to the giant dipole resonance.
They are summarized in Table XIII, together with the
previous results.

E. Muonium to antimuonium conversion

A muonium atom is a hydrogenlike bound state of !"

and e!. The spontaneous conversion (or oscillation) of a
muonium atom (!"e! or Mu) to its antiatom, antimuo-
nium atom (!!e" or Mu,) is another interesting class of
muon LFV process. In this Mu!Mu conversion, the or-
dinary additive law of conservation of muon and elec-
tron numbers is violated by two units (#Le/!#$2),
whereas muon or electron number is conserved multipli-
catively (Feinberg and Weinberg, 1961). This possibility
was suggested by Pontecorvo in 1957 (Pontecorvo,
1957), even before the muonium atom was observed for
the first time at the Nevis cyclotron of Columbia Univer-
sity (Hughes et al., 1960).

1. Phenomenology of Mu!Mu conversion

Various interactions could induce !#Li!#2 processes,
such as Mu!Mu conversion, as discussed in Sec. III.E.
To discuss the phenomenology of the Mu!Mu conver-
sion, we take as an example the effective four-fermion

FIG. 32. Positron energy spectra of the !!"Ti→e""Ca re-
action; !!e"(gs) and !!e"(gr) are the expected signals for
the transitions to the ground state and to the giant-dipole-
resonance states, respectively. The assumed branching ratios
for gs and gr are 2.2%10!11 and 4.5%10!10 (provided by P.
Wintz).

TABLE XIII. Historical progress and summary of !!!e" conversion in various nuclei; gs and ex,
respectively, denote the transitions to the ground state and excited states (mostly giant-dipole-
resonance states), respectively.

Process 90%-C.L. upper limit Place Year Reference

!!"Cu→e""Co 2.6%10!8 SREL 1972 Bryman et al. (1972)
!!"S→e""Si 9%10!10 SIN 1982 Badertsher et al. (1982)
!!"Ti→e""Ca(gs) 9%10!12 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(ex) 1.7%10!10 TRIUMF 1988 Ahmad et al. (1988)
!!"Ti→e""Ca(gs) 4.3%10!12 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(ex) 8.9%10!11 PSI 1993 Dohmen et al. (1993)
!!"Ti→e""Ca(gs) 1.7%10!12 PSI 1998 Kaulard et al. (1998)
!!"Ti→e""Ca(ex) 3.6%10!11 PSI 1998 Kaulard et al. (1998)
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µ- + N(Z) →e+ + N*(Z-2)
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Other CLFV Physics at COMET Phase-I

nucleus

µ−

Z

e-

The overwrap between µ- and e- is proportional to Z3. For Z=82 (Pb), the 
overwrap increases by a factor of 5x105 over the muonium. The rate is 
10-17 to 10-18.

µ- + e- →e- + e-

• µ-e-→e-e- has two-body final 
state, although µ+→e+e+e- is a 3-
body decay.


• A muonium CLFV decay such as 
µ+e-→e+e+ is a 2-body decay 
having a larger phase space, but 
the overwrap of µ+ and e- is small.
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We propose a new process of !!e! ! e!e! in a muonic atom for a quest of charged lepton flavor

violation. The Coulomb attraction from the nucleus in a heavy muonic atom leads to significant

enhancement in its rate, compared to !þe! ! eþe!. The upper limit of the branching ratio is estimated

to be of the orders of Oð10!17–10!18Þ for the photonic and the four-fermion interactions from the present

experimental constraints. The search for this process could serve complementarily with the other relevant

processes to shed light upon the nature of charged lepton flavor violation.
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Charged lepton flavor violation (CLFV) is known to be
one of the important rare processes to search for new
physics beyond the standard model (SM). Various theoreti-
cal models predict sizable rates of CLFV processes, which
are just below the present experimental upper limits. The
ongoing and future experiments for CLFV searches might
reach sensitivities in a range of predictions by many theo-
retical models. At this moment, the CLFV searches with
muons have presented the best experimental limits owing
to a large number of muons available for measurements
[1]. Typical CLFV processes with muons include !þ !
eþ", !þ ! eþeþe!, and !!-e! conversion in a muonic
atom (!!N ! e!N). However, even if a CLFV process is
discovered in future, many other different CLFV processes
should be studied to shed light upon the understanding of
the nature of the CLFV interactions and develop insights
into new physics responsible for CLFV.

In this Letter, we propose a new CLFV reaction process
of a bound !! in a muonic atom, which is

!!e! ! e!e!; (1)

where!! and e! in the initial state of Eq. (1) are the muon
and the atomic 1S electron(s) bound in a Coulomb field of
the nucleus in a muonic atom, respectively.

This !!e! ! e!e! process in a muonic atom has vari-
ous significant advantages. First of all, this process could
have not only the photonic dipole interaction but also the
four-fermion contact interaction, as in the processes of
!þ ! eþe!e! and !!N ! e!N, but in contrast to
!þ ! eþ" that has only the former. This would allow us
potentially to investigate the full structure of new physics
beyond the SM. Second, this process has a two-body final
state, in which a sum of the energies of the two signal

electrons would be equal tom! þme ! B!, where B! is a
binding energy of the muon in a muonic atom. This would
provide a cleaner experimental signature as well as a larger
final-state phase space than!þ ! eþeþe! decay. Also, in
comparison with the !þ ! eþ" search, the measurement
of this process would be relatively easier since no photon
detection is involved. Third, one can consider a similar
reaction process with a muonium, such as !þe! ! eþe!.
However, the rate of this!þe! ! eþe! process cannot be
large because of small overlap between the !þ and e!

wave functions. However, in a muonic atom of atomic
number Z, we can increase the overlap between the !!

and e! wave functions if an atom of large Z is chosen. The
enhancement occurs owing to the Coulomb interaction
from the nucleus which attracts the 1S state electron wave
function towards the !! and the nucleus. The expected
rate would increase by a factor of ðZ! 1Þ3. For example,
the rate for a lead (Z ¼ 82) is 5& 105 times that of the
!þe!!eþe! reaction. However, in a muonic atom, nu-
clear muon capture occurs in addition to the normal Michel
muon decay in the 1S state. But since a lifetime of a mu-
onic atom changes from 2:2 !s for a hydrogen to '80 ns
for a lead, the branching ratio of!!e! ! e!e! is reduced
by a factor of at most only 20. Therefore, a net increase of
the branching ratio would become significant for a large
atomic number Z. A potential disadvantage is that the rates
of reaction processes like this might not be large enough
compared to rare CLFV muon decays. Therefore, in this
Letter we will evaluate the rate of !!e! ! e!e! and
discuss its upper limit that is allowed from the present
experimental limits of other CLFV processes.
We describe the process of !!e! ! e!e! in a muonic

atom by an effective Lagrangian at the energy scale of the
muon mass m!. Following Ref. [1], we define

L!!e!!e!e! ¼!4GFffiffiffi
2

p ½m!AR !!R#
!$eLF!$ þm!AL !!L#

!$eRF!$þ g1ð !!ReLÞð !eReLÞþ g2ð !!LeRÞð !eLeRÞþg3ð !!R"
!eRÞ

& ð !eR"!eRÞþg4ð !!L"
!eLÞð !eL"!eLÞþg5ð !!R"

!eRÞð !eL"!eLÞþg6ð !!L"
!eLÞð !eR"!eRÞþ ðH:c:Þ): (2)
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… In the future

B(µN ! eN)  10�18



PRISM/PRIME : Future Search 
with S.E. sensitivity of 3x10-19

PRISM 
beamline

PRISM-FFAG 
muon storage ring

momentum slit

extract kickers

injection kickers

matching section

 curved solenoid 
(short)

SC solenoid / 
pulsed horns

PRIME 
detector MW beam



Summary

• Flavor Physics at Intensity Frontier, in 
particular CLFV, would give the best 
opportunity to search for BSM. 


• Muon to electron conversion could be one 
of the important CLFV processes.


• COMET Phase-I is aiming at S.E. 
sensitivity of 3x10-15. 

• The construction of the beam line 

started at KEK in 2013.

• The measurement will start in early 

2018-2019.

• COMET (Phase-II) at J-PARC is aiming at 

S.E. sensitivity of (1.0-2.6)x10-17. It will 
follow immediately after Phase-I.

my dog, IKU


