Sterile neutrino dark matter

Kunio Kaneta (IBS-CTPU)

in collaboration with Zhaofeng Kang (KIAS) and Hye-Sung Lee (IBS-CTPU)

Reference: 1606.09317

Mini-Workshop on "Quarks, leptons and Family Gauge Bosons" @ Osaka U., Dec. 27, 2016

Outline

- 1. Introduction
- 2. Dark matter under the *B-L* gauge force
- 3. Implications
- 4. Summary

1. Introduction

Dark matter

We empirically know the existence of dark matter:

- > it is hard to explain the rotation curve of the galaxy without dark matter
- > gravitational lens effect of galaxy clusters indicates dark matter
- > observation of the bullet cluster
- Iarge scaler structure formation
- ➤ WMAP, Planck

Properties of dark matter

- ➤ Neutral under SU(3)_C x U(1)_{EM}
- Stable enough
- > Weakly/Feebly interacting

Dark matter is not a part of the standard model

To identify the dark matter is one of the most important tasks in modern particle physics

Neutrino oscillations Zenith angle dependence Multi-GeV The Nobel Prize in Physics Up-going Down-going 2015 (a) FC e-lik X²(shape) of Events (e X (shape) 5 Photo: A. Mahmoud Photo: A. Mahmoud Takaaki Kajita Arthur B. McDonald (from ICRR's homepage) Prize share: 1/2 Prize share: 1/2 ωs €

- Neutrinos produced as a flavor state propagate as a mass eigenstate, and are detected as a different flavor state
- > So, neutrino oscillations imply non-zero masses of neutrinos

Right-handed neutrinos as a missing piece to the SM

- Massive neutrinos may indicate the existence of chiral partners: right-handed neutrinos (RHNs)
- > RHNs can address other important issues, e.g., DM and BAU

Possible roles of the RHNs in cosmology

- > RHN as a dark matter candidate:
 - production mechanism: non-thermal for $M_N \sim \text{keV}$, thermal for $M_N > \text{MeV} \text{GeV}$
 - stability: seesaw for $M_N \sim \text{keV}$, flavor symmetry (?) for $M_N > \text{MeV} \text{GeV}$
- > RHN as an origin of BAU:
 - $M_N \sim O(1-100)$ GeV: leptogenesis by the active-sterile neutrino oscillation
 - $M_N > O(10^9)$ GeV: leptogenesis by the CP violating decay of RHNs $(M_N \sim O(1-10^{13})$ GeV: resonant leptogenesis)

The neutrino minimal standard model (vMSM)

- The vMSM is one of the appealing framework that can address neutrino mass, DM, BAU
 Its minimal framework is just *the SM + three right-handed (Majorana) neutrinos*
- The Lagrangian of the vMSM is given by

$$\mathcal{L} = \mathcal{L}_{SM} + i\bar{N}_i \partial N_i - \left[f_{ai}\bar{L}_a H N_i + \frac{1}{2}\mathcal{M}_{N_i}\overline{N^C}_i N_j + h.c. \right]$$

[Asaka, Blanchet, Shaposhnikov, '05] [Asaka, Shaposhnikov, '05]

[Dodelson, Widrow, '94] [Akhemedov, Rubakov, Smirnov, '98]

- v_a N_1 oscillation generates the keV-scale dark matter
- v_a $N_{2,3}$ oscillations generate the baryon asymmetry

Light sterile neutrino in the early universe

Soon after the v-decoupling, Big Bang Nucleothynsesis (BBN) starts (@ T ~ MeV)

> Light element observations give a constraint on the number of neutrino species ($N_{eff} \sim 3$)

Sterile neutrino should decouple at T > MeV

Light sterile neutrino in the early universe

Sterile neutrino reaches the thermal equilibrium through the active-sterile neutrino oscillation:

active neutrino
$$\rightarrow \begin{bmatrix} \nu_a \\ \nu_s \end{bmatrix} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} \nu_i \\ N_1 \end{bmatrix}$$

 $\begin{array}{c} \nu_a \\ V_a \end{array}$

 $\begin{array}{c} \nu_a \\ N_1 \end{bmatrix}$

 $\begin{array}{c} \nu_a \\ N_1 \end{pmatrix}$

 $\begin{array}{c$

> Sufficient condition of time scales for the sterile neutrino to thermalize:

 $t_{\text{oscillation}} <\!\!< t_{\text{scattering}} <\!\!< t_{\text{expansion}}$

Light sterile neutrino in the early universe

- ➤ For lage mixing
 - v_s can be thermal, and affects to BBN (N_{eff})
 - The life-time of *v_s* becomes too short to be dark matter

From cosmological and astrophysical observations, the mixing angle is constrained to be fairly small

The sterile neutrino with small mixing can be a good candidate for dark matter

 $\tau_s > \tau_U \sim 13.7 \times 10^9$ years

→ $sin^{2}(2\theta_{1})/10^{-6} < (30 keV/M_{1})$

For small mixing angle, the dark matter vs is non-thermally produced through the V_a-V_s Oscillation [Dodelson, Widrow, '94]

 $\Omega_{N1}h^2 \sim 0.12 \times (sin^2 2\theta/7 \times 10^{-8})^{1.23} (M_{N1}/keV)$

[K.Abazajian, '06]

Astrophysical constraints (X-ray observations)

Red region: whole amount of dark matter number density is explained by Dodelson-Widrow mechanism

 $\Omega_{N1}h^2 \sim 0.12 \times (sin^2 2\theta/7 \times 10^{-8})^{1.23} (M_{N1}/keV)$

The sterile neutrino is a long-lived particle, and emitting X-ray

Non-observation of such X-ray line gives constraints

Astrophysical constraints (phase-space density)

- > Astrophysical massive objects are surrounded by dark matter
- > Fermionic dark matter phase-space density can not exceed the maximal value due to the Pauli principle
- > Maximum phase density:

$$f_{\rm FD} = \frac{1}{\exp(-p/T) + 1}$$
$$Q_{\rm FD}^{\rm max} \equiv \frac{\bar{\rho}}{\langle v^2 \rangle^{3/2}} \sim \frac{m_s^4}{(2\pi)^3}$$

(except for normalization)

> Demanding the observed phase density should be smaller than Q^{max} , a lower bound on the dark matter mass can be obtained

 $O^{\rm obs}$ $< Q_{\rm FD}^{\rm max}$

[Horiuchi, et al., '14]

Alternative DM production mechanism is necessary

(Cf. [R.Adhikari et al, '16])

2. Dark matter under the B-L gauge force

Success of the SM and the gauge principle

- > The SM is a phenomenologically successful model so far, and its success is supported by the *gauge principle*: $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$
- Gauge symmetry plays a role to regulate not only the gauge interactions but also the matter contents by means of the anomaly cancellation

By following this success, the $U(1)_{B-L}$ gauge symmetry is the most attractive symmetry that offers three right-handed neutrinos

Our framework

- > Under the gauge symmetry $G = G_{SM} \times U(1)_{B-L}$, we have following new fields:
 - three right-handed neutrinos (*N*₁, *N*₂, *N*₃; *B*-*L* charge -1)
 - A singlet Higgs field (Φ_S ; *B-L* charge -2)
 - *B*-*L* gauge boson (*Z*')

> Our framework ~ the local $U(1)_{B-L}$ extended version of the vMSM (we call this UvMSM)

The B-L gauge interaction can provide viable dark matter production mechanisms; freeze-in and freeze-out

Our setup

> Lagrangian of the *UvMSM* is given by

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N}_{i} \not D N_{i} - \left(y_{\alpha i} \overline{L}_{\alpha} N_{i} \tilde{\Phi}_{H} + \frac{\kappa_{i}}{2} \Phi_{S} \overline{N_{i}^{C}} N_{i} + h.c. \right) + |D_{\mu} \Phi_{S}|^{2} - V(\Phi_{H}, \Phi_{S}) - \frac{1}{4} Z_{\mu\nu}' Z^{\mu\nu}$$

$$V(\Phi_{H}, \Phi_{S}) = \frac{\lambda_{H}}{2} (|\Phi_{H}|^{2} - v_{H}^{2})^{2} + \frac{\lambda_{S}}{2} (|\Phi_{S}|^{2} - v_{S}^{2})^{2} + \lambda_{HS} (|\Phi_{H}|^{2} - v_{H}^{2}) (|\Phi_{S}|^{2} - v_{S}^{2})$$

> As Φ_S develops the vacuum expectation value, $\langle \Phi_S \rangle = v_S$, N_i and Z' acquire the mass:

$$M_{N_i} = \kappa_i v_S, \quad M_{Z'}^2 = 8g_{B-L}^2 v_S^2$$

> We take $M_{N1} < M_{N2}$, M_{N3} , so that N_1 can be a (decaying) dark matter when the Yukawa coupling (y_{a1}) is sufficiently small

Our setup

> Lagrangian of the *UvMSM* is given by

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N}_{i} \not D N_{i} - \left(y_{\alpha i} \overline{L}_{\alpha} N_{i} \tilde{\Phi}_{H} + \frac{\kappa_{i}}{2} \Phi_{S} \overline{N_{i}^{C}} N_{i} + h.c. \right) + |D_{\mu} \Phi_{S}|^{2} - V(\Phi_{H}, \Phi_{S}) - \frac{1}{4} Z_{\mu\nu}^{\prime} Z^{\prime\mu\nu}$$

$$V(\Phi_{H}, \Phi_{S}) = \frac{\lambda_{H}}{2} (|\Phi_{H}|^{2} - v_{H}^{2})^{2} + \frac{\lambda_{S}}{2} (|\Phi_{S}|^{2} - v_{S}^{2})^{2} + \lambda_{HS} (|\Phi_{H}|^{2} - v_{H}^{2}) (|\Phi_{S}|^{2} - v_{S}^{2})$$

> As Φ_S develops the vacuum expectation value, $\langle \Phi_S \rangle = v_S$, N_i and Z' acquire the mass:

$$M_{N_i} = \kappa_i v_S, \quad M_{Z'}^2 = 8g_{B-L}^2 v_S^2$$

> We take $M_{N1} < M_{N2}$, M_{N3} , so that N_1 can be a (decaying) dark matter when the Yukawa coupling (y_{a1}) is sufficiently small

> To concentrate on the Z' effect, we turn off the Higgs portal coupling λ_{HS} (\rightarrow 0)

2. Dark matter under the *B*-*L* gauge force

Relevant reactions for thermalization of N₁

- > There are mainly three processes that can bring N_1 into the thermal bath
- ➤ Reaction rates:

 $r(N_1 \leftrightarrow f_{SM}), r(N_1 \leftrightarrow Z'), r(Z' \leftrightarrow f_{SM})$

> In most of parameter spaces, $r(N_1 \leftrightarrow f_{SM})$ determines whether N_1 is thermalized or not

 $> r(N_1 \leftrightarrow f_{SM})/H \sim 1$ at the thermalization and the freeze-out temperature

 Dark matter scenario drastically changes, depending on whether N₁ is thermalized or not.

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

Constraints from BBN and Horizontal Branch (HB) stars exclude non-rel. N₁

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > For thermal N_1 , usual *freeze-out* mechanism can work
- > For non-thermal N_1 , *freeze-in* mechanism can work

- > Another interesting case is $2M_{N1} > M_Z$, where Z' can not decay into a pair of N_1
- > The reaction rate $r(N_1 \leftrightarrow f_{SM})$ becomes always off-resonant (smaller than on-res. case)

- > Another interesting case is $2M_{N1} > M_Z$, where Z' can not decay into a pair of N_1
- > The reaction rate $r(N_1 \leftrightarrow f_{SM})$ becomes always off-resonant (smaller than on-res. case)

For thermal N₁, N₁ is usual cold dark matter produced by freeze-out mechanism

$$\Omega_{N_1}^{\text{th}} h^2 = \frac{s_0 M_{N_1} Y_{N_1}^{\text{th}}}{\rho_c h^{-2}} \propto \left. \frac{1}{\sigma V} \right|_{T \sim T_{N_1}^{\text{dec}}}$$

- > Another interesting case is $2M_{N1} > M_Z$, where Z' can not decay into a pair of N_1
- > The reaction rate $r(N_1 \leftrightarrow f_{SM})$ becomes always off-resonant (smaller than on-res. case)

- > Another interesting case is $2M_{N1} > M_Z$, where Z' can not decay into a pair of N_1
- > The reaction rate $r(N_1 \leftrightarrow f_{SM})$ becomes always off-resonant (smaller than on-res. case)

3. Implications

The Search for Hidden Particles (SHiP) experiment

- > SHiP: A new proton beam dump experiment at CERN
- ➤ The SHiP utilizes 400 GeV proton beam from the SPS with ~10²⁰ protons on target

If the life-time of Z' is too short or too long, Z' can not be observed

The Search for Hidden Particles (SHiP) experiment

The Search for Hidden Particles (SHiP) experiment

SHiP can be a powerful tool for searching the freeze-in scenario

B-L breaking scale

> Dark matter abundance is determined by g_{B-L} and $M_{Z'}$, which implies v_S through

$$M_{Z'}^2 = 8g_{B-L}^2 v_S^2$$

> In the freeze-in region for off-resonance case $(2M_{N1}>M_{Z'})$, we obtain

$$v_S^2 \simeq (7.9 \times 10^4 M_{Z'})^2 \left(\frac{0.12}{\Omega_{N_1}^{\text{nt}} h^2}\right)^{1/2} \left(\frac{100}{g_*}\right)^{3/4}$$

Summary

- Recent observations disfavor the simple production mechanism for sterile neutrino dark matter (DW mech.) in the vMSM.
- ➤We discussed various right-handed neutrino dark matter scenarios in the U(1)_{B-L} gauge extension of the vMSM: UvMSM.
- Forthcoming beam dump experiment can (partly) test the freeze-in scenario.