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1. Introduction

Dark matter

Properties of dark matter

➢ it is hard to explain the rotation curve of the galaxy without dark matter 
➢ gravitational lens effect of galaxy clusters indicates dark matter
➢ observation of the bullet cluster
➢ large scaler structure formation
➢ WMAP, Planck

➢ Neutral under SU(3)C x U(1)EM
➢ Stable enough
➢ Weakly/Feebly interacting

We empirically know the existence of dark matter:

Dark matter is not a part of the standard model

To identify the dark matter is one of the most important tasks 
in modern particle physics
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Neutrino oscillations

➢ Neutrinos produced as a flavor state propagate as a mass eigenstate, and are detected 
as a different flavor state

➢ So, neutrino oscillations imply non-zero masses of neutrinos

➢ Massive neutrinos may indicate the existence of chiral partners: right-handed 
neutrinos (RHNs)

➢ RHNs can address other important issues, e.g., DM and BAU

Right-handed neutrinos as a missing piece to the SM

(from ICRR’s homepage)
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Possible roles of the RHNs in cosmology

The neutrino minimal standard model (vMSM)

➢ RHN as a dark matter candidate:
- production mechanism: non-thermal for MN ~ keV, thermal for MN > MeV - GeV
- stability: seesaw for MN ~ keV, flavor symmetry (?) for MN > MeV - GeV

➢ RHN as an origin of BAU:

- MN ~ O(1-100) GeV: leptogenesis by the active-sterile neutrino oscillation
- MN > O(109) GeV: leptogenesis by the CP violating decay of RHNs

(MN ~ O(1-1013) GeV: resonant leptogenesis)

➢ The vMSM is one of the appealing framework that can address neutrino mass, DM, BAU
➢ Its minimal framework is just the SM + three right-handed (Majorana) neutrinos
➢ The Lagrangian of the vMSM is given by

L = LSM + iN̄i /@Ni �

fai L̄aHNi +

1
2
MNi NC

iNj + h.c.
�

a = e, μ, τ

[Asaka, Blanchet, Shaposhnikov, ‘05]
[Asaka, Shaposhnikov, ‘05]

- νa - N1 oscillation generates the keV-scale dark matter
- νa - N2,3 oscillations generate the baryon asymmetry

[Dodelson, Widrow, ‘94]

[Akhemedov, Rubakov, Smirnov, ‘98]
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Light sterile neutrino in the early universe
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Fig. 1. The effective degrees of freedom in the early universe, g* ‘/2(T). For comparison, we show the 
commonly used quantities g,%‘(T) and g:,/&,(T). 

In fig. 1 we plot g, ‘l’(T) so obtained for the two QCD phase transition 
temperatures 150 MeV and 400 MeV. For comparison, we also show giL2(T), 
which is the value many times assigned to gL12(T), and the value g:a/d2der(T) 
obtained with the approximation of counting only the relativistic degrees of 
freedom and with a linear interpolation during the QCD phase transition. 

5. Solution of the density equation 

In general, the evolution equation (2.23) for the comoving abundance Y has to 
be solved numerically, because it is a form of the Riccati equation, of which no 
closed-form solutions are known in the general case. 

We should integrate eq. (2.23) from x = - 03 to x =x0 = m/T,, to obtain the 
value of the density Y, = Y(x,) at the present photon temperature To. In practice 
it is sufficient to start at x = 1. In this regime, the particle statistics can be 
considered to be Maxwell-Boltzmann. The use of the correct statistics would 
amount to a correction of less than 1% on Y. [9]. The equilibrium density Yeg is 
given by 

y = 4% X2K2W 

eq 47~~ h&m/x) ' (5-l) 

➢ Quick look at the thermal history of the universe [Gondolo, Gelmini, ‘91]

EWPTQCD PT
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➢ Soon after the v-decoupling, Big Bang Nucleothynsesis (BBN) starts (@ T ~ MeV)
➢ Light element observations give a constraint on the number of neutrino species (Neff ~ 3)
➢ Sterile neutrino should decouple at T > MeV
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P(⌫a ! ⌫s) = sin2 2✓1 sin
✓
�m2

4E
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Light sterile neutrino in the early universe
➢ Sterile neutrino reaches the thermal equilibrium through the active-sterile neutrino 

oscillation:

q

u, d

W L

va

va ~ c1 vi + c2 Ni

propagate & oscillate 
as a mass eigenstate (vi, Ni)

The weak eigenstate (active 
neutrino) va is produced in 
the thermal bath

va component:

vs component:

re-scattering with the 
SM particles

if Γv P < H, vs is passing 
through without re-
scattering, otherwise go 
back to va and re-
scattered with the SM 
particles

reaction rate: 

Γv ~ GF2 T5

transition rate:

➢ Sufficient condition of time scales for the sterile neutrino to thermalize:
toscillation  << tscattering << texpansion

active neutrino
sterile neutrino

mass eigenstate
⌫a
⌫s

�
=


cos ✓1 � sin ✓1
sin ✓1 cos ✓1

� 
⌫i
N1
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Light sterile neutrino in the early universe

[P.Langacker, ‘89]

From cosmological and astrophysical 
observations, the mixing angle is 
constrained to be fairly small

➢ For lage mixing
- vs can be thermal, and affects to BBN (Neff)
- The life-time of vs becomes too short to be 

dark matter

The sterile neutrino with small mixing can 
be a good candidate for dark matter
τs > τU ~ 13.7×109 years

sin2(2θ1)/10-6 < (30keV/M1)

For small mixing angle, the dark matter 
vs is non-thermally produced through the 
va-vs oscillation

ΩN1h2 ~ 0.12 × (sin22θ/7×10-8)1.23(MN1/keV)

[K.Abazajian, ‘06]

[Dodelson, Widrow, ‘94]
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Astrophysical constraints (X-ray observations)7

and with flux (Fγ) given, after [60, 70], by:

Fγ = 10−7 erg s−1 cm−2 ×
(

MFOV
DM

1011M⊙

)

D−2m5
s sin

2 2θ

(9)
where MFOV

DM is the projected mass in the field of view of
the observation, D is the distance in Mpc (for which we
adopt 0.784 Mpc). We estimated MFOV

DM (1.6× 1010M⊙

for the on-axis spectrum) by integrating the DM surface
density, estimated from the model of [71], over the field of
view of each individual pointing. We then appropriately
averaged each value to ensure the correct line count-rate
in the composite spectra.
To determine an upper limit on sin2θ for a given ms,

the line (at fixed energy) was added simultaneously to the
on-axis and offset spectra, and its normalization varied
(while fitting all other parameters) until the fit statistic
increased by 4.61, corresponding to a 95% confidence in-
terval for two parameters of interest. This approach is
similar to the “statistical” method of [70], although we
have appropriately included the required statistical un-
certainties on the background model. In Fig 4, we show
our measured upper limits on sin2θ. Because the fluxes
of the astrophysical and instrumental lines are not known
a priori, they are degenerate with any coincident sterile
neutrino decay line. This reduction in sensitivity is im-
mediately apparent in the jagged upper limit curve. A
major source of uncertainty in this measurement is the
precise value of MFOV

DM [70]. For example, if we use the
DM profile model C1 of Ref. [72], MFOV

DM is increased by
∼15% in the core, resulting in correspondingly tighter
constraints on sin2θ.

V. DISCUSSION

The one-sided 95% C.L. lower and upper limits from
the Local Group are shown in Figure 4. These include
lower limits from phase-space arguments of MW dSphs
(mDW

s ! 2.5 keV), lower limits from subhalo counting
comparison to M 31 dSphs (mDW

s ! 8.8 keV), and up-
per limits based on X-ray observations of M 31. Com-
bined, these decisively constrain the canonical Dodelson-
Widrow (DW) production mechanism for generating suf-
ficient sterile neutrinos to match the DM abundance at
> 99% C.L.
Phase-space arguments have been argued to be among

the most robust methods to constrain WDM, but they
have not been strong enough to rule out the DM ster-
ile neutrino when coupled with X-ray limits [31] (indi-
cated by the larger arrow in Figure 4 at 1.8 keV). Our
newly added Segue I dSph, combined with updated X-
ray limits based on deep Chandra observations of M 31,
excludes the entire DW model parameter space, includ-
ing the wider range due to hadronic model uncertainties
[35] (red hatched), at 95% C.L. The exception is around
mDW

s ≈ 4.3 keV, where a strong X-ray background line in
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FIG. 4: Constraints on sterile neutrino parameters. Shaded
areas are excluded regions: 95% C.L. upper limits derived
from the X-ray modeling of M31 (labeled “M31 X-ray”), the
results from Ref. [60] shown for comparison (dotted; see text),
and upper limits from Suzaku observations of Ursa Minor
[73] (labeled “UMIN X-ray”); vertical lines show lower mass
limits from Tremain-Gunn phase-space considerations (ms ∼

0.4 keV) [28], Coma Berenices phase-space (mDW
s ∼ 1.5 keV,

dashed line), Segue I phase-space (mDW
s ∼ 2.5 keV), and

M 31 subhalo counts (mDW
s ∼ 8.8 keV). The big and small

arrows on the abscissa indicate lower limits from Ref. [31]
and Ref. [20], respectively. The DW sterile neutrino model
of Ref. [6] and its associated upper and lower bounds [35] are
shown and labeled.

the M 31 data prevents a strong limit on a sterile neutrino
decay line. However, limits from Suzaku—with vastly
different backgrounds and in particular weaker lines—
already exclude this region [73], as shown in Figure 4.
If Segue I is not included, the mass limit is weakened
to 1.5 keV (dashed vertical line) and allows a DW ster-
ile neutrino of mDW

s ≈ 2 keV to generate the observed
cosmological DM abundance. However, including limits
from subhalo counting, all of the DW parameter region
is comfortably excluded at > 99% C.L.

For the same dwarfs, our limits are weaker than
those of Ref. [30], where the authors adopted signifi-
cantly higher phase-space density estimates (e.g., 5 ×
10−3(M⊙/pc3)(km/s)−3 for Leo IV and Canes Venatici
II). These follow from Ref. [39], where the central density
is used to estimate Q, as opposed to our conservative es-
timate based on the mean density within rh. Also, the
stellar velocity dispersion is assumed in that work to be
the same as the DM velocity dispersion (η∗ = 1). For
these reasons, we obtain weaker but more robust lim-
its. Our limits are similar in numerical value to those of
Ref. [31], where the authors assume η∗ = 1 but consider

➢ The sterile neutrino is a long-lived 
particle, and emitting X-ray 

×
θ1

W

vαN1

γ

�(N1 ! �⌫) ⇠ ✓2
1G2

F M5
N1

➢ Non-observation of such X-ray line 
gives constraints[Horiuchi, et al., ‘14]

➢ Red region: whole amount of dark 
matter number density is explained by 
Dodelson-Widrow mechanism

ΩN1h2 ~ 0.12 × (sin22θ/7×10-8)1.23(MN1/keV)
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Astrophysical constraints (phase-space density)7

and with flux (Fγ) given, after [60, 70], by:
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(
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DM is the projected mass in the field of view of
the observation, D is the distance in Mpc (for which we
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DM (1.6× 1010M⊙
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density, estimated from the model of [71], over the field of
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on-axis and offset spectra, and its normalization varied
(while fitting all other parameters) until the fit statistic
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terval for two parameters of interest. This approach is
similar to the “statistical” method of [70], although we
have appropriately included the required statistical un-
certainties on the background model. In Fig 4, we show
our measured upper limits on sin2θ. Because the fluxes
of the astrophysical and instrumental lines are not known
a priori, they are degenerate with any coincident sterile
neutrino decay line. This reduction in sensitivity is im-
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lower limits from phase-space arguments of MW dSphs
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FIG. 4: Constraints on sterile neutrino parameters. Shaded
areas are excluded regions: 95% C.L. upper limits derived
from the X-ray modeling of M31 (labeled “M31 X-ray”), the
results from Ref. [60] shown for comparison (dotted; see text),
and upper limits from Suzaku observations of Ursa Minor
[73] (labeled “UMIN X-ray”); vertical lines show lower mass
limits from Tremain-Gunn phase-space considerations (ms ∼

0.4 keV) [28], Coma Berenices phase-space (mDW
s ∼ 1.5 keV,

dashed line), Segue I phase-space (mDW
s ∼ 2.5 keV), and

M 31 subhalo counts (mDW
s ∼ 8.8 keV). The big and small

arrows on the abscissa indicate lower limits from Ref. [31]
and Ref. [20], respectively. The DW sterile neutrino model
of Ref. [6] and its associated upper and lower bounds [35] are
shown and labeled.

the M 31 data prevents a strong limit on a sterile neutrino
decay line. However, limits from Suzaku—with vastly
different backgrounds and in particular weaker lines—
already exclude this region [73], as shown in Figure 4.
If Segue I is not included, the mass limit is weakened
to 1.5 keV (dashed vertical line) and allows a DW ster-
ile neutrino of mDW

s ≈ 2 keV to generate the observed
cosmological DM abundance. However, including limits
from subhalo counting, all of the DW parameter region
is comfortably excluded at > 99% C.L.

For the same dwarfs, our limits are weaker than
those of Ref. [30], where the authors adopted signifi-
cantly higher phase-space density estimates (e.g., 5 ×
10−3(M⊙/pc3)(km/s)−3 for Leo IV and Canes Venatici
II). These follow from Ref. [39], where the central density
is used to estimate Q, as opposed to our conservative es-
timate based on the mean density within rh. Also, the
stellar velocity dispersion is assumed in that work to be
the same as the DM velocity dispersion (η∗ = 1). For
these reasons, we obtain weaker but more robust lim-
its. Our limits are similar in numerical value to those of
Ref. [31], where the authors assume η∗ = 1 but consider

➢ Astrophysical massive objects are 
surrounded by dark matter

➢ Fermionic dark matter phase-space 
density can not exceed the maximal 
value due to the Pauli principle

f
FD

=

1

exp(�p/T ) + 1

➢ Maximum phase density:

(except for normalization)

➢ Demanding the observed phase 
density should be smaller than Qmax, 
a lower bound on the dark matter 
mass can be obtained

[Horiuchi, et al., ‘14]

(Cf. [R.Adhikari et al, ’16])
Alternative DM production mechanism is necessary

Qmax

FD

⌘ ⇢̄

hv2i3/2
⇠ m4

s

(2⇡)3

Qobs < Qmax

FD
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2. Dark matter under the B-L gauge force

The B-L gauge interaction can provide viable dark matter production mechanisms; 
freeze-in and freeze-out

➢ Under the gauge symmetry G = GSM × U(1)B-L, we have following new fields:

Success of the SM and the gauge principle
➢ The SM is a phenomenologically successful model so far, and its success is supported 

by the gauge principle: GSM = SU(3)C × SU(2)L × U(1)Y
➢ Gauge symmetry plays a role to regulate not only the gauge interactions but also the 

matter contents by means of the anomaly cancellation

By following this success, the U(1)B-L gauge symmetry is the most attractive symmetry 
that offers three right-handed neutrinos

Our framework

- three right-handed neutrinos (N1, N2, N3; B-L charge -1)
- A singlet Higgs field (ΦS; B-L charge -2)
- B-L gauge boson (Z’ )

➢ Our framework ~ the local U(1)B-L extended version of the vMSM (we call this UvMSM)
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Our setup
➢ Lagrangian of the UvMSM is given by

L = LSM + iNi /DNi �
⇣

y↵i L↵Ni �̃H +
i

2
�SNC

i Ni + h.c.
⌘

+ |Dµ�S |2 � V (�H ,�S) � 1
4

Z 0
µ⌫Z 0µ⌫

V (�H ,�S) =
�H

2
(|�H |2 � v2

H )2 +
�S

2
(|�S|2 � v2

S)2 + �HS(|�H |2 � v2
H )(|�S|2 � v2

S)

➢ We take MN1 < MN2, MN3, so that N1 can be a (decaying) dark matter when the Yukawa 
coupling (yα1) is sufficiently small

➢ As ΦS develops the vacuum expectation value, <ΦS>=vS, Ni and Z’  acquire the mass:

MNi = i vS, M2
Z 0 = 8g2

B�Lv2
S

SM sector N1 sector
Z’

ΦS
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Our setup
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➢ We take MN1 < MN2, MN3, so that N1 can be a (decaying) dark matter when the Yukawa 
coupling (yα1) is sufficiently small

➢ As ΦS develops the vacuum expectation value, <ΦS>=vS, Ni and Z’  acquire the mass:

MNi = i vS, M2
Z 0 = 8g2

B�Lv2
S

SM sector N1 sector
Z’

ΦS

➢ To concentrate on the Z’ effect, we turn off the Higgs portal coupling λHS (→0)



2. Dark matter under the B-L gauge force

Relevant reactions for thermalization of N1

➢ Reaction rates:

N1Z’fSM

SM sector N1 sectorZ’

fSM Z’ N1

Z’

Z’

fSM

fSM

N1

N1

Z’

on-shell or off-shell

➢ In most of parameter spaces, 
r(N1↔fSM) determines whether N1 
is thermalized or not

➢ r(N1↔fSM)/H ~ 1 at the thermalization and the freeze-out temperature

r/H

1/T

thermalize decouple

1
➢ Dark matter scenario 

drastically changes, 
depending on whether 
N1 is thermalized or not.

➢ There are mainly three processes that 
can bring N1 into the thermal bath

r(N1↔fSM), r(N1↔Z’), r(Z’↔fSM)

r/H

1/T

1

for smaller coupling, N1 never 
reaches thermal equilibrium
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N1 production and relevant experimental constraints
➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work

1 10 100

10
�15

10
�12

10
�9

Y

x = m/T

Figure 1: Log-Log plot of the evolution of the relic yields for conventional freeze-
out (solid coloured) and freeze-in via a Yukawa interaction (dashed coloured) as a
function of x = m/T . The black solid line indicates the yield assuming equilibrium is
maintained, while the arrows indicate the e↵ect of increasing coupling strength for the
two processes. Note that the freeze-in yield is dominated by the epoch x ⇠ 2 � 5, in
contrast to freeze-out which only departs from equilibrium for x ⇠ 20� 30.

of the freeze-out mechanism is that for renormalisable couplings the yield is dominated by low
temperatures with freeze-out typically occurring at a temperature a factor of 20 � 25 below the
DM mass, and so is independent of the uncertain early thermal history of the universe and possible
new interactions at high scales.

Are there other possibilities, apart from freeze-out, where a relic abundance reflects a com-
bination of initial thermal distributions together with particle masses and couplings that can be
measured in the laboratory or astrophysically? In particular we seek cases, like the most attractive
form of freeze-out, where production is IR dominated by low temperatures of order the DM mass,
m, and is independent of unknown UV quantities, such as the reheat temperature after inflation.

In this paper we show that there is an alternate mechanism, “freeze-in”, with these features.
Suppose that at temperature T there is a set of bath particles that are in thermal equilibrium and
some other long-lived particle X, having interactions with the bath that are so feeble that X is
thermally decoupled from the plasma. We make the crucial assumption that the earlier history
of the universe makes the abundance of X negligibly small, whether by inflation or some other
mechanism. Although feeble, the interactions with the bath do lead to some X production and,
for renormalisable interactions, the dominant production of X occurs as T drops below the mass
of X (providing X is heavier than the bath particles with which it interacts). The abundance of
X “freezes-in” with a yield that increases with the interaction strength of X with the bath.

Freeze-in can be viewed as the opposite process to freeze-out. As the temperature drops below
the mass of the relevant particle, the DM is either heading away from (freeze-out) or towards
(freeze-in) thermal equilibrium. Freeze-out begins with a full T 3 thermal number density of DM

2

[L.Hall, et al. ‘09]

increasing <σv>

increasing <σv>

Yeq

freeze-out

freeze-in

dn

dt
+ 3Hn = �h�vi(n2 � n2

eq)
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➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work



2. Dark matter under the B-L gauge force

N1 production and relevant experimental constraints
➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work



2. Dark matter under the B-L gauge force

N1 production and relevant experimental constraints
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➢ For non-thermal N1, freeze-in mechanism can work

➢ Constraints from BBN and 
Horizontal Branch (HB) stars 
exclude non-rel. N1



2. Dark matter under the B-L gauge force

N1 production and relevant experimental constraints
➢ For thermal N1, usual freeze-out mechanism can work
➢ For non-thermal N1, freeze-in mechanism can work

➢ Constraints from BBN and 
Horizontal Branch (HB) stars 
exclude non-rel. N1

➢ In the thermal N1 regions, N1 is 
produced as a relativistic particle, 
so its abundance is 
overproduced:

4

SM prediction, which gives the bound denoted by
the hatched dashed curve, by imposing that the ra-
tio between the cross section involving Z 0 and the
SM contributions should not exceed the maximum
error [27]. This constraint is very powerful since it,
unlike others, applies to a wide region of MZ0 .

5. ⌫ � q scattering at NuTeV. The mass range of Z 0

above 10 GeV is searched by observing neutrino-
nucleon scatterings. The NuTeV experiment mea-
sured ⌫µ(⌫̄µ) � q scattering, where ⌫µ and ⌫̄µ are
provided by the Tevatron [40]. Since there is rela-
tively large systematic errors, we take a conserva-
tive limit: MZ0/gB�L > 0.4 TeV [41, 42], which is
depicted by the light blue region.

6. Horizontal-branch (HB) stars. For the lighter Z 0,
the energy loss rate of the stars in the globular clus-
ters gives the more restrictive constraints, where
the larger energy loss shortens the lifetime of the
stars, and hence the observed population of the
stars would be changed [43]. Here, we show the con-
straint from HB stars represented by the hatched
curve [44].

7. Supernova 1987A (SN1987A). The green region
shows the constraint from the supernova explosion.
The extra light particle taking energies from the
center of the supernova can a↵ect the signal dura-
tion of the neutrinos [43], in which the energy loss
argument puts the bound [45]. Note that if we take
into account the chameleon e↵ect depending on the
scalar potential, the mass of Z 0 in a supernova core
can be larger than the supernova temperature, and
thus this constraint can be avoided [46].

The latest LHC bound on the Z 0 comes into the region
above TeV scale [23], which is beyond the region of our
interest, and we omit it in the figure.

C. Thermal production of the keV-scale N1

As a warm-up, we first consider the well-known case
that MN1 is around the keV scale, e.g., 10 keV, which
can be a good candidate for a warm dark matter. 7 From
Fig. 1 it is seen that on the MZ0 � gB�L plane, N1 can
be thermalized in the bulk space, so let us concentrate
on this scenario.

N1 that once entered the plasma can be a warm or cold
relic, depending on its mass and the decoupling temper-
ature. The light yellow region in Fig. 1 indicates that N1

is relativistic (MN1/T
dec
N1

< 1) at T dec
N1

, while it is non-
relativistic (MN1/T

dec
N1

> 1) in the light green region,

7 A dedicated analysis on if N1 is warm, by calculating its free
stream, can be found in Ref. [16].

where T dec
N1

is the decoupling temperature of N1 evalu-
ated by equating ra,b ' H. When N1 is relativistic at
T dec
N1

, the relic abundance of N1 is given by

⌦N1h
2 =

s0MN1

⇢ch�2
⇥ nN1

s

���
Tdec
N1

' 110⇥


MN1

10 keV

� "
10.75

g⇤(T dec
N1

)

#
, (9)

where nN1 is the number density of N1 and ⇢c =
1.05368 ⇥ 10�5h2 GeV cm�3 is the critical density of
the universe. s = (2⇡/45)g⇤T 3 and s0 = 2889.2cm�3 are
the entropy density and its present day value. In this
case, the abundance of N1 exceeds the observed value
of the dark matter abundance ⌦DMh2 ' 0.12 [26], and
the universe is overclosed. Such a large abundance can
be diluted if we take into account late time entropy pro-
duction by, e.g, the decay of N2,3 [19, 20], and the same
mechanism is expected to work here. 8

It should be noted that, asides from using a di↵erent
gauge extension than Refs. [19, 20], our analysis shows
larger allowed regions which open a new window much
below the weak scale, and has low energy laboratory
prospects. This is manifest in Fig. 1, which shows that
BBN, BD and BABAR already exclude a large portion
of the parameter space, and the SHiP experiment is able
to cover an even wider space.

We also comment on that in the light green region N1

can be a cold relic. The thermalization temperature of
N1 is, however, lower than 1 MeV in this region, and
hence the thermal abundance becomes negligibly small.

D. MZ0 > 2MN1

We here discuss the case of MZ0 > 2MN1 . It is well
known that when the mass of N1 is around electroweak
scale while Z 0 is at TeV scale, N1 can be the thermal relic
dark matter. This scenario is addressed in the context of
the classically conformal models [47], and collider signa-
tures of such heavy Z 0 are studied in, e.g., Refs. [23, 48],
which we do not purse in this paper.

On the other hand, there is another possibility that N1

is produced by the freeze-in mechanism [17], where Z 0 is
produced as an on-shell state, and subsequently decays
into a pair of N1. In this scenario, N1 never enters the
thermal bath, and is produced by the annihilations of a
pair of the SM particles and also a pair of the Z 0 if it is
thermalized. This implies that the gauge coupling is very
small compared to the thermal dark matter scenario. We
also require that N1 does not exist at the time when the

8 Now the new singlet Higgs boson might be another candidate
for late entropy production. In order for this scenario to work,
careful analysis of the decay modes of S is necessary since S can
decay into a pair of N1, which increases the N1 number density.

➢ Some dilution mechanism is 
necessary (e.g., the late time 
entropy production by the decay 
of N2,3) [Bezrukov, et al., ‘10]
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universe is reheated up to the temperature TR after the
inflation, namely nN1(TR) ' nN1(1) = 0, and thus the
Boltzmann equation for nN1 is given by

dnN1

dt
+ 3HnN1

=
T

64⇡4

Z 1

4M2
N1

ds �v(s� 4M2
N1

)1/2s�1K1(
p
s/T ),(10)

where s is the center of mass energy. For the annihi-
lation cross section �v, the process (a) is the dominant
contribution, which is given by

�v ' 2

3
g4B�LQ

2
f

s+ 2M2
N1

MZ0�Z0
�(s�M2

Z0), (11)

where we have utilized the narrow width approximation.
9 Substituting Eq. (11) to the right hand side of Eq.
(10), we obtain
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dT
=�

45
p
5g5B�L
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p
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MPlM
4
Z0

g
3/2
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⇥

2 +

4M2
N1

M2
Z0

� 
1�

4M2
N1

M2
Z0

�1/2
, (12)

where we have used YN1 ⌘ nN1/s and d/dt =
�HT d/dT , and take g⇤ as a constant in the following.
By replacing T by x ⌘ MN1/T and integrating x from
0 to 1 in Eq. (12), we end up with the non-thermal
abundance

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
,

' 0.12⇥
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100

g⇤

◆3/2 ✓
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◆2 ✓43/6

Cf

◆
f(⌧),

(13)

where f(⌧) = ⌧(2 + ⌧2)
p
1� ⌧2 with ⌧ = 2MN1/MZ0

taking 0 < ⌧ < 1, and f(⌧) takes the maximal value
f(⌧) ' 1.27 at ⌧ ' 0.77. We also approximate the
total decay width as �Z0 ⇠ Cfg

2
B�L/(12⇡)MZ0 with

Cf ⌘
P

f Q
2
f + 1/2 (the factor 1/2 counts the N1 con-

tribution, see appendix A). If Z 0 decays into all the
SM fermions (and N1), Cf becomes 43/6. Therefore,
the gauge coupling should be fairly small to obtain the
observed dark matter abundance in this case, and it is
challenging to test such a feebly interacting Z 0 experi-
mentally.

E. MZ0 < 2MN1

Next, let us further focus on a possible dark mat-
ter scenario for MZ0 < 2MN1 , where the BBN bound

9 We here consider the case that TR is su�ciently large compared
to all the mass scale appearing in the U⌫MSM. As other possi-
bility, the scenario with TR < MZ0 was discussed in Ref. [49]

gets relaxed significantly because the reaction (a) is sup-
pressed. This can be seen in the region MZ0 . 20 keV in
Fig. 1, where the BBN bound on the gauge coupling be-
comes weak since N1 is hardly thermalized. In our setup,
there are two scenarios for the dark matter according to
whether the relic abundance is produced by thermal or
non-thermal way. In the region above dot-dashed curves
in Fig. 2, N1 comes into the thermal bath at some time.
In this parameter region, N1 is always non-relativistic at
the decoupling temperature T dec

N1
, and thus, we can eval-

uate the dark matter abundance in the same way as the
usual cold dark matter case, which is given by

⌦th
N1
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s0MN1Y

th
N1

⇢ch�2
, (14)

1/Y th
N1

=


45

8⇡2M2
Pl
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N1

0
g
1/2
⇤ h�vidT, (15)

where the thermally averaged annihilation cross section,
h�vi, includes the processes (a) and (c). The result
is shown by the blue lines in Fig. 2 where we have
given two benchmark cases, MN1 = MZ0 (left panel) and
MN1 = 100MZ0 (right panel). In both cases, however, the
thermal dark matter scenario is ruled out by the Borexino
experiment.
As a viable dark matter scenario, let us consider the

non-thermal case where N1 is produced by freeze-in
mechanism as discussed before. By demanding the con-
dition nN1(TR) ' nN1(1) = 0, we obtain the abundance
given by

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
, (16)

1/Y nt
N1

=


45

8⇡2M2
Pl

��1/2 Z 1

0
g
1/2
⇤ h�vidT. (17)

As an important feature of this case is that the abun-
dance is almost independent from the mass of N1. To see
this, let us approximately derive the analytical expres-
sion of the relic abundance. Since we here consider the
o↵-resonance reactions and only the reaction (a) is su�-
cient in most of the cases, we can take �v ⇠ g4B�L/(3⇡s).
Substituting �v to the right hand side of Eq. (10), we
obtain

dYN1

dT
= � 45

p
10

32⇡8g
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⇤

g4B�LMPlM
2
N1

T 4
K2

1 (MN1/T ). (18)

It should be noted that the right hand side of Eq. (18)
takes the maximum value at around T ⇠ MN1 , and thus,
the produced number density is not sensitive to higher
temperatures. Due to this fact, it turns out to be YN1 /
1/MN1 after integrating over the temperature, and hence
the abundance is independent from MN1 . By replacing
T by x ⌘ MN1/T and integrating x from 0 to 1 in Eq.
(18), we end up with the non-thermal abundance

⌦nt
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h2 ' 0.12⇥
✓
100

g⇤

◆3/2 ✓
gB�L

4.5⇥ 10�6

◆4

. (19)

(Since YN1 is proportional to MPl/MN1, its 
abundance is almost mass independent)

ΩN1h2>0.12

ΩN1h2>0.12
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It should be noted that the right hand side of Eq. (18)
takes the maximum value at around T ⇠ MN1 , and thus,
the produced number density is not sensitive to higher
temperatures. Due to this fact, it turns out to be YN1 /
1/MN1 after integrating over the temperature, and hence
the abundance is independent from MN1 . By replacing
T by x ⌘ MN1/T and integrating x from 0 to 1 in Eq.
(18), we end up with the non-thermal abundance
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(Since YN1 is proportional to MPl/MN1, its 
abundance is almost mass independent)

➢ Relevant experimental constraints
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The Search for Hidden Particles (SHiP) experiment
➢ SHiP: A new proton beam dump experiment at CERN
➢ The SHiP utilizes 400 GeV proton beam from the SPS with ~1020 protons on target
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muon shield (60m) detector (50m)

Nsig ~ NPOT×Rprod×Pdet➢ The number of signal events:

- Z’ production: proton bremsstrahlung
Z’

p

N N
p

- Pdet: probability that Z’ decays inside the detector

If the life-time of Z’ is too short or too long, Z’ can not be observed
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(18), we end up with the non-thermal abundance

⌦nt
N1

h2 ' 0.12⇥
✓
100

g⇤

◆3/2 ✓
gB�L

4.5⇥ 10�6

◆4

. (19)

➢ Freeze-in N1

g⇤ ⇠ g⇤(MN1 )

for larger gB-L, Z’ lifetime becomes shorter

SHiP parameters:
Ebeam = 400GeV, NPOT = 1020

shield length: 50m
detector length: 60m
Nsig > 3 (assuming no-background)

for smaller gB-L, Z’ lifetime becomes longer

➢ SHiP will be able to cover:

[Gorbunov, et al., ‘15]

1 MeV < MZ’ < 200 MeV (in blue band)
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universe is reheated up to the temperature TR after the
inflation, namely nN1(TR) ' nN1(1) = 0, and thus the
Boltzmann equation for nN1 is given by

dnN1

dt
+ 3HnN1

=
T

64⇡4

Z 1

4M2
N1

ds �v(s� 4M2
N1

)1/2s�1K1(
p
s/T ),(10)

where s is the center of mass energy. For the annihi-
lation cross section �v, the process (a) is the dominant
contribution, which is given by

�v ' 2

3
g4B�LQ

2
f

s+ 2M2
N1

MZ0�Z0
�(s�M2

Z0), (11)

where we have utilized the narrow width approximation.
9 Substituting Eq. (11) to the right hand side of Eq.
(10), we obtain

dYN1

dT
=�

45
p
5g5B�L

64
p
2⇡5

MPlM
4
Z0

g
3/2
⇤ �Z0T 5

K1(MZ0/T )

⇥

2 +

4M2
N1

M2
Z0

� 
1�

4M2
N1

M2
Z0

�1/2
, (12)

where we have used YN1 ⌘ nN1/s and d/dt =
�HT d/dT , and take g⇤ as a constant in the following.
By replacing T by x ⌘ MN1/T and integrating x from
0 to 1 in Eq. (12), we end up with the non-thermal
abundance

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
,

' 0.12⇥
✓
100

g⇤

◆3/2 ✓
gB�L

6.3⇥ 10�12

◆2 ✓43/6

Cf

◆
f(⌧),

(13)

where f(⌧) = ⌧(2 + ⌧2)
p
1� ⌧2 with ⌧ = 2MN1/MZ0

taking 0 < ⌧ < 1, and f(⌧) takes the maximal value
f(⌧) ' 1.27 at ⌧ ' 0.77. We also approximate the
total decay width as �Z0 ⇠ Cfg

2
B�L/(12⇡)MZ0 with

Cf ⌘
P

f Q
2
f + 1/2 (the factor 1/2 counts the N1 con-

tribution, see appendix A). If Z 0 decays into all the
SM fermions (and N1), Cf becomes 43/6. Therefore,
the gauge coupling should be fairly small to obtain the
observed dark matter abundance in this case, and it is
challenging to test such a feebly interacting Z 0 experi-
mentally.

E. MZ0 < 2MN1

Next, let us further focus on a possible dark mat-
ter scenario for MZ0 < 2MN1 , where the BBN bound

9 We here consider the case that TR is su�ciently large compared
to all the mass scale appearing in the U⌫MSM. As other possi-
bility, the scenario with TR < MZ0 was discussed in Ref. [49]

gets relaxed significantly because the reaction (a) is sup-
pressed. This can be seen in the region MZ0 . 20 keV in
Fig. 1, where the BBN bound on the gauge coupling be-
comes weak since N1 is hardly thermalized. In our setup,
there are two scenarios for the dark matter according to
whether the relic abundance is produced by thermal or
non-thermal way. In the region above dot-dashed curves
in Fig. 2, N1 comes into the thermal bath at some time.
In this parameter region, N1 is always non-relativistic at
the decoupling temperature T dec

N1
, and thus, we can eval-

uate the dark matter abundance in the same way as the
usual cold dark matter case, which is given by

⌦th
N1

h2 =
s0MN1Y

th
N1

⇢ch�2
, (14)

1/Y th
N1

=


45

8⇡2M2
Pl

��1/2 Z Tdec
N1

0
g
1/2
⇤ h�vidT, (15)

where the thermally averaged annihilation cross section,
h�vi, includes the processes (a) and (c). The result
is shown by the blue lines in Fig. 2 where we have
given two benchmark cases, MN1 = MZ0 (left panel) and
MN1 = 100MZ0 (right panel). In both cases, however, the
thermal dark matter scenario is ruled out by the Borexino
experiment.
As a viable dark matter scenario, let us consider the

non-thermal case where N1 is produced by freeze-in
mechanism as discussed before. By demanding the con-
dition nN1(TR) ' nN1(1) = 0, we obtain the abundance
given by

⌦nt
N1

h2 =
s0MN1Y

nt
N1

⇢ch�2
, (16)

1/Y nt
N1

=


45

8⇡2M2
Pl

��1/2 Z 1

0
g
1/2
⇤ h�vidT. (17)

As an important feature of this case is that the abun-
dance is almost independent from the mass of N1. To see
this, let us approximately derive the analytical expres-
sion of the relic abundance. Since we here consider the
o↵-resonance reactions and only the reaction (a) is su�-
cient in most of the cases, we can take �v ⇠ g4B�L/(3⇡s).
Substituting �v to the right hand side of Eq. (10), we
obtain

dYN1

dT
= � 45

p
10

32⇡8g
3/2
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g4B�LMPlM
2
N1

T 4
K2

1 (MN1/T ). (18)

It should be noted that the right hand side of Eq. (18)
takes the maximum value at around T ⇠ MN1 , and thus,
the produced number density is not sensitive to higher
temperatures. Due to this fact, it turns out to be YN1 /
1/MN1 after integrating over the temperature, and hence
the abundance is independent from MN1 . By replacing
T by x ⌘ MN1/T and integrating x from 0 to 1 in Eq.
(18), we end up with the non-thermal abundance
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100
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◆3/2 ✓
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. (19)

➢ 2MN1 > MZ’

SHiP can be a powerful tool for searching the freeze-in scenario

➢ 2MN1 < MZ’
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3. Implications

B-L breaking scale

➢ Dark matter abundance is determined by gB-L and MZ’, which implies vS through

M2
Z 0 = 8g2

B�Lv2
S

➢ In the freeze-in region for off-resonance case (2MN1>MZ’), we obtain
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(a) (b)

FIG. 2. Dark matter abundance and various constraints on the gauge coupling and the mass of the Z0. The color code of
the constraints are the same as Fig. 1. N1 becomes thermal in the region above the dot-dashed lines, and non-thermal in the
region below the same lines.

This estimate well coincide with our numerical calcula-
tion shown as red hatched curves in Fig. 2, where the
small fluctuations are caused by the temperature depen-
dence of g⇤ whose value is roughly given by g⇤(T ⇠
max[MZ0 ,MN1 ]).

We briefly comment on the BBN bound in Fig. 2,
which is depicted by light gray regions. Since the BBN
bound is sensitive only for relativistic spices at around the
neutrino decoupling temperature, it can eliminate up to
MN1 ,MZ0 . T dec

⌫ . Below gB�L ⇠ 10�5, thermalization
temperature of N1 and Z 0 is below T dec

⌫ or they never
come into thermal bath, and thus the BBN can not con-
strain this region.

IV. IMPLICATIONS

In the non-thermal scenario for 2MN1 > MZ0 , the dark
matter abundance given by Eq. (19) implies the B � L
breaking scale. Since the Z 0 mass is given by Eq. (5),
substituting Eq. (19) we end up with the B�L breaking
scale vS :

v2S ' (7.9⇥ 104MZ0)2
✓

0.12

⌦nt
N1

h2

◆1/2 ✓100

g⇤

◆3/4

. (20)

It turns out that, e.g., for the mass regions 500 keV .
MZ0 . 1 MeV and MZ0 & 0.1 GeV, the scalar mass is
at most 200 GeV . Ms . 400 GeV and Ms & 4 TeV,
respectively, with taking �S = 4⇡. It is interesting that
Ms ' 750 GeV can be achieved for MZ0 > 0.1 GeV by

taking appropriate value of �S , and hence s can be a good
candidate for recently reported the 750 GeV diphoton
excess at the LHC Run 2 [50]. Although scrutinizing
the e↵ect of s is beyond the scope of this paper, our
analysis can be justified when we take �HS vanishingly
small so that s does not come into the thermal bath and
the non-thermal production of N1 through the decay of
s is su�ciently small [15].

Next, let us discuss possible experiments to search the
freeze-in region (on the red curves) in Fig. 2. Beam
dump experiments are powerful tool to look for the small
coupling regions, and the SHiP experiment can explore
a larger region. We estimate the expected reach of the
SHiP by using proton bremsstrahlung. The SHiP ex-
periment utilizes the CERN SPS 400 GeV proton beam,
where the Z 0 is produced via bremsstrahlung in proton
scattering o↵ target. The SHiP is designed to have 60
m muon shield and 50 m detector region by which the
Z 0 decaying inside the detector is observed. To estimate
the signal events, we take the same kinematic parame-
ters shown in Ref. [37]. By demanding there is no back-
ground, in Figs. 1-3 we show the expected region with
the signal events more than three, which is depicted by
the black solid curves. The figure 3 focuses on the region
around the BD constraints. The blue region in the fig-
ure shows the case that N1 satisfying 2MN1 > MZ0 can
explain the whole amount of the observed dark matter
abundance. The bottom side boundary of this region is
determined by taking 2MN1 ' MZ0 , while the top side
boundary is obtained by takingMN1 � MZ0 . As a result,

➢ This leads to
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FIG. 2. Dark matter abundance and various constraints on the gauge coupling and the mass of the Z0. The color code of
the constraints are the same as Fig. 1. N1 becomes thermal in the region above the dot-dashed lines, and non-thermal in the
region below the same lines.

This estimate well coincide with our numerical calcula-
tion shown as red hatched curves in Fig. 2, where the
small fluctuations are caused by the temperature depen-
dence of g⇤ whose value is roughly given by g⇤(T ⇠
max[MZ0 ,MN1 ]).

We briefly comment on the BBN bound in Fig. 2,
which is depicted by light gray regions. Since the BBN
bound is sensitive only for relativistic spices at around the
neutrino decoupling temperature, it can eliminate up to
MN1 ,MZ0 . T dec

⌫ . Below gB�L ⇠ 10�5, thermalization
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⌫ or they never
come into thermal bath, and thus the BBN can not con-
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In the non-thermal scenario for 2MN1 > MZ0 , the dark
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It turns out that, e.g., for the mass regions 500 keV .
MZ0 . 1 MeV and MZ0 & 0.1 GeV, the scalar mass is
at most 200 GeV . Ms . 400 GeV and Ms & 4 TeV,
respectively, with taking �S = 4⇡. It is interesting that
Ms ' 750 GeV can be achieved for MZ0 > 0.1 GeV by

taking appropriate value of �S , and hence s can be a good
candidate for recently reported the 750 GeV diphoton
excess at the LHC Run 2 [50]. Although scrutinizing
the e↵ect of s is beyond the scope of this paper, our
analysis can be justified when we take �HS vanishingly
small so that s does not come into the thermal bath and
the non-thermal production of N1 through the decay of
s is su�ciently small [15].

Next, let us discuss possible experiments to search the
freeze-in region (on the red curves) in Fig. 2. Beam
dump experiments are powerful tool to look for the small
coupling regions, and the SHiP experiment can explore
a larger region. We estimate the expected reach of the
SHiP by using proton bremsstrahlung. The SHiP ex-
periment utilizes the CERN SPS 400 GeV proton beam,
where the Z 0 is produced via bremsstrahlung in proton
scattering o↵ target. The SHiP is designed to have 60
m muon shield and 50 m detector region by which the
Z 0 decaying inside the detector is observed. To estimate
the signal events, we take the same kinematic parame-
ters shown in Ref. [37]. By demanding there is no back-
ground, in Figs. 1-3 we show the expected region with
the signal events more than three, which is depicted by
the black solid curves. The figure 3 focuses on the region
around the BD constraints. The blue region in the fig-
ure shows the case that N1 satisfying 2MN1 > MZ0 can
explain the whole amount of the observed dark matter
abundance. The bottom side boundary of this region is
determined by taking 2MN1 ' MZ0 , while the top side
boundary is obtained by takingMN1 � MZ0 . As a result,
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FIG. 2. Dark matter abundance and various constraints on the gauge coupling and the mass of the Z0. The color code of
the constraints are the same as Fig. 1. N1 becomes thermal in the region above the dot-dashed lines, and non-thermal in the
region below the same lines.

This estimate well coincide with our numerical calcula-
tion shown as red hatched curves in Fig. 2, where the
small fluctuations are caused by the temperature depen-
dence of g⇤ whose value is roughly given by g⇤(T ⇠
max[MZ0 ,MN1 ]).

We briefly comment on the BBN bound in Fig. 2,
which is depicted by light gray regions. Since the BBN
bound is sensitive only for relativistic spices at around the
neutrino decoupling temperature, it can eliminate up to
MN1 ,MZ0 . T dec

⌫ . Below gB�L ⇠ 10�5, thermalization
temperature of N1 and Z 0 is below T dec

⌫ or they never
come into thermal bath, and thus the BBN can not con-
strain this region.

IV. IMPLICATIONS

In the non-thermal scenario for 2MN1 > MZ0 , the dark
matter abundance given by Eq. (19) implies the B � L
breaking scale. Since the Z 0 mass is given by Eq. (5),
substituting Eq. (19) we end up with the B�L breaking
scale vS :
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It turns out that, e.g., for the mass regions 500 keV .
MZ0 . 1 MeV and MZ0 & 0.1 GeV, the scalar mass is
at most 200 GeV . Ms . 400 GeV and Ms & 4 TeV,
respectively, with taking �S = 4⇡. It is interesting that
Ms ' 750 GeV can be achieved for MZ0 > 0.1 GeV by

taking appropriate value of �S , and hence s can be a good
candidate for recently reported the 750 GeV diphoton
excess at the LHC Run 2 [50]. Although scrutinizing
the e↵ect of s is beyond the scope of this paper, our
analysis can be justified when we take �HS vanishingly
small so that s does not come into the thermal bath and
the non-thermal production of N1 through the decay of
s is su�ciently small [15].

Next, let us discuss possible experiments to search the
freeze-in region (on the red curves) in Fig. 2. Beam
dump experiments are powerful tool to look for the small
coupling regions, and the SHiP experiment can explore
a larger region. We estimate the expected reach of the
SHiP by using proton bremsstrahlung. The SHiP ex-
periment utilizes the CERN SPS 400 GeV proton beam,
where the Z 0 is produced via bremsstrahlung in proton
scattering o↵ target. The SHiP is designed to have 60
m muon shield and 50 m detector region by which the
Z 0 decaying inside the detector is observed. To estimate
the signal events, we take the same kinematic parame-
ters shown in Ref. [37]. By demanding there is no back-
ground, in Figs. 1-3 we show the expected region with
the signal events more than three, which is depicted by
the black solid curves. The figure 3 focuses on the region
around the BD constraints. The blue region in the fig-
ure shows the case that N1 satisfying 2MN1 > MZ0 can
explain the whole amount of the observed dark matter
abundance. The bottom side boundary of this region is
determined by taking 2MN1 ' MZ0 , while the top side
boundary is obtained by takingMN1 � MZ0 . As a result,(M2

s ' 2�Sv2
S)

(taking λS = 4π)



Summary

Summary

➤Recent observations disfavor the simple production 
mechanism for sterile neutrino dark matter (DW mech.) in 
the vMSM. 

➤We discussed various right-handed neutrino dark matter 
scenarios in the U(1)B-L gauge extension of the vMSM: 
UvMSM.

➤ Forthcoming beam dump experiment can (partly) test the 
freeze-in scenario.


