

The tour time takes 14 min with question time 30 sec.

Exhibition Rooms

Room 1: Standard model

Room 2: Yukawaon model in the early stage

Room 3: MNS and CKM mixings

Room 4: Sumino mechanism (2009)

Room 5: SU(5) compatible yukawaon model

Room 6: The future

Room 1: Standard model

These are Yukawa interaction terms in the standard model

$$H_Y = (Y_u)_{ij} \bar{q}_{Li} u_{Rj} H_u + (Y_d)_{ij} \bar{q}_{Li} d_{Rj} H_d + \cdots$$

Ancient people had believed that mass spectra and mixings of quarks and leptons originate in the so-called "Yukawa coupling constants" $Y_{\rm f}$.

 Y_f are fundamental constants which are given by God, so that we must never intend to calculate values of Y_f .

Room 2-1: Yukawaon model in the early stage (1990)

This is a prototype of the yukawaon model, where the charged lepton mass formula (1983)

$$m_e + m_\mu + m_\tau = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2$$

was tried to derive from a minimization of

$$V = \mu^2 \text{Tr}[\Phi\Phi] + \frac{1}{2}\lambda \text{Tr}^2[\Phi\Phi] + \frac{1}{2}\lambda' \text{Tr}^2[\Phi] \text{Tr}[\hat{\Phi}\hat{\Phi}]$$

 Φ : **8+1** of U(3)

"Nonet assumption"

$$\hat{\Phi} = \Phi - \frac{1}{3} Tr[\Phi]$$
: 8 of U(3)

YK, MPL A5, 2319 (1990),

Room 2-2: Yukawaon model in the early stage (2008)

photolityan

This is an early yukawaon model, where Y_f are not constants, but fields. We call them yukawaons. Therefore, we can consider non-Abelian family symmetry without an explicit symmetry breaking terms.

$$W_Y = \frac{y_u}{\Lambda} q_i Y_{ij}^u u_j^c H_u + \frac{y_d}{\Lambda} q_i Y_{ij}^d d_j^c H_d$$
$$+ \frac{y_\nu}{\Lambda} \ell_i Y_{ij}^\nu \nu_j^c H_u + \frac{y_e}{\Lambda} \ell_i Y_{ij}^e e_j^c H_d + y_R \nu_i^c Y_{ij}^R \nu_j^c$$

SUSY and O(3)-family symmetry have been assumed.

 Y_f are distinguished from each other by "sector charges" Q_X . (Nowadays, R charges are used instead of Q_X .) YK., PLB565, 227 (2008)

Room 3: MNS and CKM mixings

This is a first model which could give a unified description of MNS and CKM mixings in terms of a fundamental VEV matrix $\langle \Phi_e \rangle$:

$$W_Y = \frac{y_u}{\Lambda} q_i Y_{ij}^u u_j^c H_u + \frac{y_d}{\Lambda} q_i Y_{ij}^d d_j^c H_d$$
$$+ \frac{y_\nu}{\Lambda} \ell_i Y_{ij}^e \nu_j^c H_u + \frac{y_e}{\Lambda} \ell_i Y_{ij}^e e_j^c H_d + y_R \nu_i^c Y_{ij}^R \nu_j^c$$

Note that the yukawaon Y_v is replaced with Y_e .

The neutrino mass matrix is given by a seesaw form

$$M_{\nu} = m_D M_R^{-1} m_D^T \propto \langle Y_e \rangle \langle Y_R \rangle^{-1} \langle Y_e \rangle$$

The model was intended to describe all VEV matrices of Yukawaons in terms of a VEV matrix $\langle \Phi_e \rangle$

Y.K., PLB680, 76 (2009).

$$M_{e} \propto \langle Y_{e} \rangle \propto \langle \Phi_{e} \rangle \langle \Phi_{e} \rangle$$

$$M_{u} \propto \langle Y_{u} \rangle \propto \langle \Phi_{u} \rangle \langle \Phi_{u} \rangle$$

$$M_{u}^{1/2} \propto \langle \Phi_{u} \rangle \propto \langle \Phi_{e} \rangle \langle S_{u} \rangle \langle \Phi_{e} \rangle$$

$$M_{d} \propto \langle Y_{d} \rangle \propto \langle \Phi_{e} \rangle \langle S_{d} \rangle \langle \Phi_{e} \rangle$$

$$\langle S_{q} \rangle_{e} \propto 1 + a_{q} X \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + a_{q} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

The model has given reasonable fitting not only of MNS mixing but also of CKM mixing together with mass ratios by adjusting the parameters a_u and a_d and by using the input

$$\langle \Phi_e \rangle = k_e \operatorname{diag}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})$$

For more accurate fitting, YK and Nishiura, PRD83, 035010 (2011).

Room 4: Sumino mechanism (2009)

Y.Sumino, PLB671, 477 (2009); JHEP 0905, 075 (2009).

I am sorry.
This room is excluded from this short-time guide program.

Room 5: SU(5) compatible yukawaon model (2011)

Yukawaons are singlets
under SU(3)_cx SU(2)_LxU(1)_Y,
so that the yukawaon model
will be compatible with GUT scenario.

He has proposed an SU(5) compatible model by adding vector-like (5*+5) and (10+10*) fields.

- The main purpose of this model was to build a yukawaon model without a cutoff Λ .
- Another purpose was to know the scale of cutoff Λ .

Room 5-1: SU(5) compatible yukawaon model with U(3) family symmetry

$$W_{Yu} = y_{u} \mathbf{10}_{i} Y_{u}^{ij} \overline{\mathbf{10}}_{j}' + M_{10} \overline{\mathbf{10}}_{i}' \mathbf{10}'^{i} + y_{10} \mathbf{10}'^{i} \mathbf{10}_{i}' \mathbf{5}_{H}$$

$$\longrightarrow W_{Yu}^{eff} = \frac{y_{u} y_{10}}{\overline{M}_{10}} \mathbf{10}_{i} Y_{u}^{ij} \mathbf{10}_{j} \mathbf{5}_{H}$$

$$W_{Ye} = y_e \bar{5}_i Y_e^{ij} 5'_j + M_5 5'_i \bar{5}'^i + y_5 \bar{5}'^i 10_i \bar{5}_H$$

$$\longrightarrow W_{Ye}^{eff} = \frac{y_e y_5}{\overline{M}_5} \overline{5}_i Y_e^{ij} \mathbf{10}_j \overline{5}_H$$

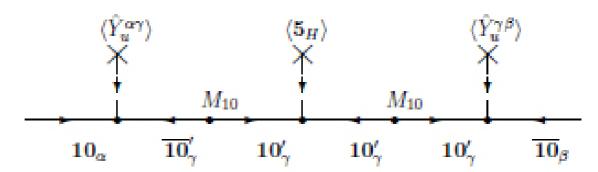
$$W_{Y\nu} = y_e \bar{5}_i Y_e^{ij} 5'_j + M_5 5'_i \bar{5}'^i + y_1 \bar{5}'^i 1_i 5_H$$

$$\longrightarrow W_{Y\nu}^{eff} = rac{y_e y_1}{\bar{M}_5} \bar{\bf 5}_i Y_e^{ij} {\bf 1}_j {\bf 5}_H \quad \text{ Note that } Y_{
u} \ \Rightarrow \ Y_e$$

Unfortunately, the model leads to

$$\Lambda_{U3} \geq \langle Y_u \rangle \sim M_{10} \geq 10^{12} \text{ GeV}$$

The value 10^{12} comes from the condition of no blowing up of the gauge c.c g_5 .


Room 5-2: $U(3)_{fam} \times O(3)_{fam} \mod el$

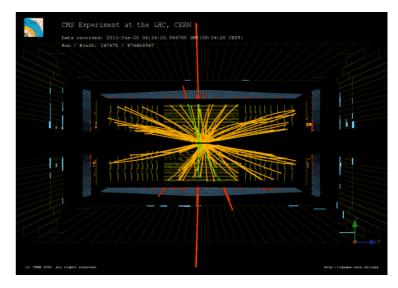
arXiv:1110.5413 [hep-ph]

This is a modified SU(5) compatible model.

We regards quarks and leptons as $(ar{5}_i+10_lpha+1_lpha)$ of U(3) $_{
m fam}$ x O(3) $_{
m fam}$ $W_{Yu} = y_u \mathbf{10}_{\alpha} \hat{Y}_u^{\alpha\beta} \overline{\mathbf{10}}_{\beta}' + M_{10} \overline{\mathbf{10}}_{\alpha}' \mathbf{10}_{\alpha}' + y_{10} \mathbf{10}_{\alpha}' \mathbf{10}_{\alpha}' \mathbf{5}_H$

$$W_{Yu}^{eff} = \frac{y_u^2 y_{10}}{(\overline{M}_{10})^2} \mathbf{10}_{\alpha} \hat{Y}_u^{\alpha \gamma} \hat{Y}_u^{\gamma \beta} \mathbf{10}_{\beta} \mathbf{5}_H$$
 We do't need Y_u!

Room 6: The Future


This room transports us to the future world.

This system was invented based on a discovery by OPERA on 2011.

In 20XX, the family gauge boson was discovered at ILC.

$$A_1^1
ightarrow e^+e^-$$
 but no $\mu^+\mu^-$ Ref.
Koide-Sumino-Yamanaka,

PLB695, 279 (2011)

In 20YY, QFD (Quantum Flavor Dynamics) was established.
 The charged lepton mass formula came clearly to be understood from QFD.

Thank you for your interests.

Please visit our museum again.

Next time, I hope that you have enough time.