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The general features of the evolution of the Yukawa coupling constants and seesaw operators in
the universal seesaw model with det M p = 0 are investigated. In the model, not only the magnitude
of the Yukawa coupling constant (Y7')ss in the up-quark sector but also that of (YLd)33 in the down-
quark sector is of the order of one, i.e., (Y )az ~ (YLd)gg ~ 1. The requirement that the model
should be calculable perturbatively, i.e., |Yi§|2/47r < 1, puts some constraints on the values of the
intermediate mass scales and tan 8 (in the SUSY model).

I. INTRODUCTION

Recently, there has been considerable interest in the
evolution (energy-scale dependency) of the Yukawa cou-
pling constants of quarks and leptons. If we intend to
build a model which gives a unified description of quark
and lepton mass matrices, we cannot avoid investigat-
ing evolutions of the Yukawa coupling constants. The
recent study on the quark masses and mixings has been
given, for example, in Ref. [1]. Especially, recently, the
evolution of the neutrino seesaw mass matrix has been re-
ceived considerable attention (for example, see Ref. [2])
in connection with the energy-scale dependence of the
large mixing angle.

As one of such unified models, there is a non-standard
model, the so-called “universal seesaw model” (USM) [3].
The model describes not only the neutrino mass matrix
M, but also the quark mass matrices M, and M; and
charged lepton mass matrix M, by the seesaw-type ma-
trices universally: The model has hypothetical fermions
F, (F=U,D,N,E;i=1,2,3) in addition to the conven-
tional quarks and leptons f; (f = u,d,v,e; i = 1,2,3),
and these fermions are assigned to fr = (2,1), fr =
(1,2), I, = (1,1) and Fr = (1,1) of SU(2)z x SU(2)g.
The 6 x 6 mass matrix which is sandwiched between the

fields (f;, Fr) and (fr, Fr) is given by

0 my,
M6><6 —
(m}% MF) ’

where my and mpg are universal for all fermion sec-
tors (f = wu,d,v,e) and only Mp have structures de-
pendent on the flavors F. For A, < Agp € Ag, where
AL = O(mL), AR = O(mR) and AS = O(MF), the 3 x 3
mass matrices M; for the fermions f are given by the
well-known seesaw expression

(1.1)

My~ —mp My ml, . (1.2)

Thus, the model answers the question why the masses
of quarks (except for top quark) and charged leptons are

so small compared with the electroweak scale Ay (~ 107
GeV).

Recently, in order to understand the observed fact
mg ~ Ap (my is the top quark mass), the authors have
proposed a universal seesaw mass matrix model with an
ansatz [4-6] det Mp = 0 for the up-quark sector (F = U).
In the model, one of the fermion masses m(U;) is zero
[say, m(Us) = 0], so that the seesaw mechanism does not
work for the third family, i.e., the fermions (usr,Usg)
and (Usg,usr) acquire masses of O(myg) and O(mpg),
respectively. We identify (usr,Us,) as the top quark
(tz,tr). Thus, we can understand the question why only
the top quark has a mass of the order of Ay.

Our interest is as follows: In the conventional model,
the Yukawa coupling constants y; of the fermions f
are given by y;r = m;/(¢}). Only the Yukawa cou-
pling constants y; of the top quark ¢ takes a large value
ye = my/{¢%) ~ 1. The other Yukawa coupling con-
stants y; are sufficiently smaller than one. On the con-
trast to the conventional model, in this USM, the ma-
trices m£ = YLf (#%) are universal for all fermion sectors
f=ude v ie, Y=Y =Yf =Y} Therefore, when
(Y}#)33 is of the order of one, the other (YLf)gg will also be
of the order of one. We are afraid that in such a model the
Yukawa coupling constants have Landau poles at energy
scales lower than a unification energy scale p = Ax (so
that the model causes “burst” of Yukawa coupling con-
stants before going to the unification energy scale). One
of our interests is to investigate whether such a model
can provide or not a set of reasonable parameter values
under the conditions that the Yukawa coupling constants
(and also the seesaw operators mLMglmE) do not have
the Landau poles below = Ax.

We also take an interest in the “democratic” USM [4,5],
which is an extended version of USM and has success-
fully given the quark masses and the Cabibbo-Kobayashi-
Maskawa (CKM) [7] matrix parameters in terms of the
charged lepton masses. However, the study is only phe-
nomenology at the energy scale ¢ = myz (mg is the neu-
tral weak boson mass). Since the model is one of the



promising models of the unified description of the quark
and lepton mass matrices, it is important to investigate
the evolutions of the mass matrices in the USM.

The democratic USM is as follows:
(1) The mass matrices my, and mpg have the same struc-
ture except for their phase factors

mfR = ﬁm£ =rkmoZ? |

(1.3)

where k is a constant and Z/ are given by
Z7 = diag (z1 exp(ié{), 29 exp(iég), 23 exp(iég)) , (1.4)

with z# + 22 + 22 = 1. (The fermion masses m{ are in-
dependent of the parameters (5{. Only the values of the
CKM matrix parameters |V;| depend on the parameters
).

(i) Tn the basis on which the matrices m£ and mfR are
diagonal, the mass matrices M are given by the form

MF:mo/\(1+3be), (15)
100 WNERE

t={o010), x==[111] . (1.6)
001 3\ 111

(ii) The parameter by for the charged lepton sector is
given by b, = 0, so that in the limit of k/A < 1, the
parameters z; are given by

1
S -3 (1.7)

Me my msr me +my +my

Then, the up- and down-quark masses are successfully
given by the choice of b, = —1/3 and by = —e'fa
(B4 = 18°), respectively. The CKM matrix is also suc-
cessfully obtained by taking
o -t =¢68 —6d =0, 0y —0f~m, (1.8)
However, when we take the evolution of the Yukawa
coupling constants into the consideration, we should con-
sider that the assumptions (i) and (ii) are required not at
the electroweak energy scale g = Ay, but at a unification
energy scale ¢ = Ax, i.e., the assumptions (i) and (ii)
should be replaced with

Yi(Ax) =Vi(Ax) =&z 2", (1.9)
& r=¢ElR, (1.10)

and
V{(Ax) =&f (1436 X) (1.11)

respectively, where mass matrices my, mpg and Mp are
expressed by

m£ = YLf<¢IOJ> ) mfR = YIJ%C<¢9%> , Mp= YSf<<I)0> )
(1.12)

respectively, and

(61) = (@R)/k = (27)/X

and ¢, ¢r and & are Higgs scalars whose vacuum ex-
pectation values (VEV) break SU(2)r, SU(2)g, and an
additional U(1) symmetry U(1)x, respectively. (For sim-
plicity, we have assumed that the values of (¢9 ), (¢%) and
(@) are real.)

Another interest in the present paper is to check
whether or not the phenomenological study in the previ-
ous paper [4] is still approximately valid under the evolu-
tion of the Yukawa coupling constants. For example, the
model with b, = 0 and b, = —1/3 has led to the relation
8.1

(1.13)

mu~3me

(1.14)

me ~ 4dm,’

almost independently of the value of the seesaw suppres-
sion factor k/A. One of the reasons to taking the value
of by in the up-quark sector as b, = —1/3 exists in the
successful relation (1.14). Therefore, we have interest
whether the relation (1.14) still holds even when we take
the evolution into consideration.

Besides, even apart from such phenomenological inter-
ests, it is very important to investigate the general fea-
tures of the evolution of the Yukawa coupling constants
in the universal seesaw model with detMp = 0, because
in the present model one of the fermions F; does not de-
couple from the theory at u < Ag, so that the evolution
shows peculiar behavior in contrast with the conventional
seesaw model.

A similar study has been done in Ref. [9] by one of the
authors (Y.K.). However, in Ref. [9], instead of the see-
saw operators K/ which will be defined later in Eqs. (3.8)
corresponding to mg, MElmE, the evolution of the seesaw

forms of the Yukawa coupling constants YLf (YSf)_1 (Yjé)Jr
were investigated by calculating the Yukawa coupling
constants YLf, Yé and YSf individually under the assump-
tion that the heavy particles with the masses of the order
of As = (®°) do not contribute to the evolution of Yj;
(A = L,R,S) below ¢ = Ag. In the present paper,
we will calculate the evolution of the Yukawa coupling
constants Yj; above p = Ag and that of the seesaw op-

erators K/ below p = Ag, except for (Y{)ig as discussed
in Sec. III.

In Sec. II, we will discuss an additional symmetry
which is introduced for the purpose of preventing that
the fermions F' acquire the masses Mp at the energy
scale g = Ag. In Sec. ITI, we will give the general formu-
lation of the evolution of the seesaw mass matrices with
det My = 0. In Sec. IV, we give the explicit coefficients
of the renormalization group equations. In Sec. V, we



discuss the evolution of an extended version of the USM,
the “democratic seesaw model” [4,5]. The numerical re-
sults for a non-SUSY model and for a minimal SUSY
model are given in Secs. VI and VII, respectively. It
will be emphasized that the energy scale dependencies
in the SUSY model are quite different from those in the
non-SUSY model. The evolution of the neutrino mass
matrix is given in Sec. VIII. It will be showed that, dif-
ferently from the conventional seesaw model, the present
neutrino mass matrix is form-invariant below y = Ag.
Finally, Sec. IX will be devoted to the conclusions and
remarks.

II. U(1)x SYMMETRY

In the present model, the gauge symmetries are broken
as follows:

SU(2), x SU(2)p x U(1), p x SU(3). x U(1) 5
} p=As
SU(2), x SU(Q):X U(1) p x SU(3),
(2.1)

U(1),,, x SU(3), .

em
Here, the symmetry U(1)x, which is spontaneously bro-
ken at the energy scale p = Ag, has been introduced for
the purpose of preventing that the fermions F' acquire
the masses Mp at g > Ag. Hereafter, we call the ranges
A < p < Ap, Arp < u < Ag, and As < ¢ < Ax as the
ranges I, IT, and III, respectively. In the present paper,
the energy scale Ax does not always mean a gauge unifi-
cation energy scale. We assume that at the energy scale
Ax the mass matrices (Yukawa coupling constants) take
simple forms discussed in the previous section.

The Yukawa coupling constants YLf, Yé and YSf are
defined as follows:

Hine = YLuiquigLURj + Y710 DRj + YfiszigLNRj + Y£ijlLi¢L EBrj

+ YﬁiquigRULj + Ylgiqui¢RDLj + Yﬁz’jzRif;RNLj + YlgijzRiquELj

+ Y ULi®Urj + Y Dri® Drj + Y&, NLi®Ng; + Y5, ELi® Egj + hec. |

L/R — ) L/R — - )
/ d ) /r / ¢ Jimr

(et ~ B —¢0
0] = ( ) , @ = ( _ ) . 2.3
L/R 40 LR L/R & L (2.3)

From Eq. (2.2), the U(1)x charge assignment should
satisfy the following relations

X(Ur) = X(UL) - X(®) ,

X(Dg) = X(D1) + X(®) , (2.4)
o) = 5 [X(Un) + X (D))
X(gr) = 3 [X(U2) + X(D1)] (25)
X(61) = 3 [X(Un) ~ X(Dr)]
X(6r) = 3 [X(Ur) = X (D1)] (26)

for quark sectors, and equations similar to Eqs. (2.4) -
(2.6) for lepton sectors f = v,e. For simplicity, in the
present paper, we choose

X(qr/r) = X(tyyr) =0, X(®)=+1. (2.7)

Then, the quantum numbers of the fermions f and F
and Higgs scalars ¢, ¢g and ® for SU(2), x SU(2), x
U(1); p x U(1) 5 are given in Table I.

Note that the quantum number of the fermion Np is
identical with that of the fermion N§, [= (Ng)° = C’Ng].
Therefore, the neutral fermions Ny and Np can acquire
the following Majorana mass terms at g = Ag:

HMajorana = (Y@%’jNLiN[c,j + YﬁjN;iNRj) S+ he. .
(2.8)
Then, the neutrino mass matrix is given as follows

0 0 0 mg c
0 0 mil o0 VR
0 m}% ML MD

mE 0 ML Mg Nrg
(2.9)

where Mp = Y¥(®), M = Y&E(®) and Mg = YE(D).
Since O(MD) ~ O(ML) ~ O(MR) > O(mR) > O(mL),
we obtain the mass matrix M, for the active neutrinos
vy,

(fL 7% NL N;)

M, ~ —mpMz'm? . (2.10)



I11I. GENERAL FEATURES OF THE
EVOLUTIONS

In the present section, we give a general formulation
of the evolution of the seesaw matrix with detMp = 0.
The evolution of the neutrino seesaw mass matrix is well
known. However, in such a model with det Mp = 0 as the
present model (the democratic seesaw model), a careful
treatment is required.

Without losing the generality, we can express the
Yukawa coupling constants YLf and Yé (f = u,d,v,e)
as

VI () =L ZL (1) . YW = LW 251 . (3.1)
where Zf;(ﬂ) (A= L, R) are defined by

Z4 (1) = diag(zh, (1), ha (), a5 () | (3:2)

A )P + )P + (0P =1, (33)
on the basis on which Yj; (pt) are diagonal. In the present
model, the word “universal” means the following initial
conditions

& (Ax) = ¢h(Ax) =i, (3.4)

|1 (Ax)| = | (Ax) | = 21 (3.5)

for all fermion sectors f = u,d, v, e universally.

In the range TIT (Ag < ¢t < Ax), the evolutions of the
Yukawa coupling constants YLf, Yé and YSf are given by
the one loop renomalization group equations (RGE) as
follows:

dy]

1672 =4 = (rf-ch+uf)vi, (A=LRS5),

(3.6)

where ¢ = log p, and Tj;, Gf; and Hf; (A=L,R,S) de-
note contributions from fermion loop corrections, vertex
corrections due to the gauge bosons; and vertex correc-
tions due to the Higgs boson, respectively. Note that the
matrices Tj; and Gf; are proportional to the unit ma-
trix. As stated in the next section, the coefficients Hi;
(A=1L,R,S) take diagonal forms on the basis on which
Yj; are diagonal. Therefore, if we take a basis on which
YLf (and YIJ;) or YSf are diagonal at p = Ax, then the
Yukawa coupling constants YLf (and Yé) or YSf can keep
the forms diagonal in the range ITI. Sometimes, the basis
on which YLf (and Yé) are diagonal is useful, but some-
times, another basis on which YSf are diagonal is useful,
as we discuss later.

In the present model, it is assumed that we can choose

a flavor basis on which YSf (Ax) are simultaneously diag-
onal for all f = w,d,v,e. Then, on this basis, since the

Yukawa coupling constants YSf (1) can keep the forms di-
agonal in the range I1I, we can find that all YSf are diag-

onal at 4 = Ag. We can denote those as

VI (As) = diag(yls, s, vls) - (3.7)

At the energy scale p = Ag, the fermions F; (except
for Us) acquire the heavy masses (Mp); = y{5<<1>0>. In
the conventional seesaw model with detMp # 0, the en-
ergy scale behaviors of the fermion masses in pp < Ag are
described by evolutions of the following operators

5y = [0 0] =30 -0

4 =1 Yis
(3.8)
and
(KY);; = [Yf(Ysl’)_l(Yf)T]ij - Z i(yf)lk(yf)]k '
(3.9)

(Hereafter, for convenience, we will denote the Yukawa
coupling constants YSR in the Majorana mass matrix
Mp = Y&(®%) as Y¥.) The quark and lepton mass ma-
trices M; are given by

My = KN (g7 )(8R)/(@%), (f=ude),  (3.10)

M, = K*(60)2/(0") . (3.11)

As explicitly shown in Sec. IV, the evolutions of the op-
erators K/ are described by the one-loop RGE’s with the
following forms

dK/'

12 = (T - Gf ) K7 + i K7+ i il
(f =u,de), (3.12)
dK”
167 d*t = (T} — G%) K" + Hep K¥ + KV HY,
(3.13)

where TIJ;, GJ;( and (H{(L, H};R) denote contributions
from fermion loop corrections, vertex corrections due to
the gauge bosons, and vertex corrections due to the Higgs
bosons ¢5, and ¢ g, respectively.

However, in the seesaw mass matrix with detMp = 0,
since one of the eigenvalues of YSf (f = u) is zero (say,
Y55 = 0), we must calculate the following operator

S YV ()

(K = [ vt =3
E k=1 ykS

(3.14)



where Y¥ = diag(y}s, y45). Note that the matrices Yy
and Y/ (Y4) in Eq. (3.14) are 2 x 2 and 3 x 2 matrices,
respectively.

Note that in (3.14) we have taken the sum over k =1
and 2 only. In the range II, the evolutions of the Yukawa
coupling constants Y4, and Y35 (i = 1,2,3) are still
described by the equation (3.6). At the energy scale
¢ = AR, we obtain a new mass term

Hmass — Z(Yﬁ)r3UL3uRz<¢%:> . (315)
By defining a mixing state
R3 — , .

VIV E)a1 2+ 1(YE) 320 + [(VE) 33

we obtain a mass my of the fourth up-quark ¢/ =
(%, 1) = (ULs, ugs),

mer = (G152 + (V) sl + [(VE)ssl? - (3.17)

Similarly, in the approximation in which the terms sup-
pressed by yi's and y5 are neglected, the mass m, of the
third up-quark (i.e., top quark) t = (t1,tg) = (v} 3, Urs)
is given by

my <¢%>\/|(Yﬁ)13|2 HIVE)2a? + [(Y1)as]*, (3.18)
where

U/LS ~ (YL )isur1 + (Y )3sur2 + (Y )33uL3
VIV E) 82+ 1Y )23 + (V)33

(3.19)

More precisely speaking, the masses (1, m., ms, my)
are obtained by diagonalizing the following mass matrix

—Eﬁ?i;h’ﬁ —Eﬁ?i;h’ﬁ —En?:\\%[(}% Y
K2 K/ AV K K/ ANKY Y/
MY — (40 K 21 22 23 1123 ’ 3.90
GO\ IR R (I Vi 520
KYRTs KYE33 kY E33 0
which is sandwiched by the fields (ULl,ULQ,ULg,ULg) + - K (g </> )((b , ) (3.21)
Rij\tRiYR R ) .
and (ug1,ugs,urs,Urs), where x = (¢%)/(¢%) and %: @0 J
A = (9% /(¢%) as defined in Eq. (1.13). Of the Yukawa
coupling constants (Y7');; and (Y3 )i;, the twelve com- d
ponents (Y);x and (Yi)i (i = 1,2,3;5 = 1,2) are ab- an
sorbed into the operator K* defined by (3.14), while the
t (V)3 and (YE); till described by th t
r(;f(a(. )iz and (Y} )is are still described by the equation B = ZYLZS quf/)LURS)
i=1
Finally, we denote the effective Hamiltonian in each
range: The effective Hamiltonian H{!! in the range III + Z jLZqSLuR])
(Ax > p > Ag) is still given by the form (2.2), and HZ/, 7‘7753
in the range II (Ag > p > Ag) and H{ , in the range I (6 0>
(Ar > pu > Ap) are given by —I—Z (@0 >Af§ Tr:i0LdR;)
: ) (%)
HIL, =5 Yits(31:01.Uns) + Z a0y i (CLidrer;) + h.c.
i=1
3 1 T
u_~ + KY, (Criop) (6165 ) 3.22
+ZYRz’3 7ri¢rRUL3) Z (@) A L)( t LJ) ( )
+ Z <I>0 qLZ¢L)(¢RQR]) respectively.

i,J 753

+ Z (I)O ZJ(QL2¢L)(¢RQR])
,J
+ Z (I)O

_|_Z q>0 K7 ﬁLigL)(gfﬁj)

£L2¢L)(¢R£R]) + h.c.

IV. COEFFICIENTS OF THE RGE

In the present section, we give the coefficients of the
renomalization group equations (RGE) (3.6), (3.12) and
(3.13).



A. Evolution in the range III

In the non-SUSY model, the terms TI{;, Gf; and Hi;
(A=L,R,S) are given as follows:

TY =T =T4=T5
=3Tr (vivit+ vivih) + o (vivit vyt

(4.1)
L 1T, 9 3
Gh =300+ 794+ 805 + 70x
5 9 3
G = goi + 7954 + 803+ 70%
L, 9., 9 3
Gy = ggf + Zﬂ%A + Zgg( ;
. 45, 9 3
G5 = gg% + Zﬂ%A + Zﬂ?{ ; (4.2)
u d _ 3 (vuyut dyrdt
HA:_HA:§(YAYA _YAYA ) )
v € 3 v v e €
Hi=-H; = 3 (YAYAT - YAYAT) ; (4.3)

where A = L, R, and
Te =TS =T§ =T§
=3Tr (vevet+vdvd) + e (vevit 4 vevst)

(4.4)
U 2 2 3 2
s=4gl+8g3+§gx,

3
G§ = gf + 803 + 0% |
v 3 2
S:+§gXa
. 3
Hi=YIVIV  (F=udve). (4.6)

The coefficients ij;, Gf; and Hi; in the minimal SUSY
model are given in the Appendix.

Asseen from Eq. (4.6), since the matrix H£ is diagonal
on the diagonal basis of Mp(Ax), the Yukawa coupling

constants YSf (1) can keep the forms diagonal. Similarly,
when we choose the diagonal basis of Mp (Ax) [Mr(Ax)],

the matrices YLf (1) [Yé (12)] keep their forms diagonal.

For a model with gor () = g2r(pt) and YI{(/,L) = YLf (1)
at 1 = Ax, we can assert that

Y (1) =Y (n) (4.7)

in the range I (As < ¢ < Ax), because on the diagonal
basis of Y}, we obtain

AW
167T2di In (YLf)”
t (Ya)i

= (T} = G} + H])ii — (T} — G + HL)u

(4.8)

The case gar = g2p 18 likely in the L-R symmetric
model. For convenience, in the numerical evaluation in
the present paper, we will take gar(¢) = g2r(yt) in the
range ITT (As < p < Ax).

B. Evolution in the ranges I and II

In the ranges I and II, all the fermions F; except for
Us are decoupled from the equation (3.6). In the present
section, we will take the diagonal basis of Mp. Therefore,
it 1s convenient that we define a spurion

S = (4.9)

o oo
o oo
_— o o

Then, the surviving Yukawa coupling constants (Y§);s
are expressed as (Y}S)i; = (Y} )izd3;. The evolution of
Y1S is still described by the RGE (3.6) by substituting
Y3S for Yj;. Here, the terms T%, G% and H} (A =L R)
are expressed as follows [Yj; (f = d,e,v) are already ab-
sorbed into the operators K/]:

T4 = 3T (YXSYXT) , (4.10)
1T, 9
Gy = gg% + Zﬂ%A + 843 , (4.11)
u 3 u ut
HYy = SYisvyT (4.12)
(A= L,R) in the range II, and
T¥ = 3Ty (YLUSYL“T) , (4.13)
1T, 9
Gr = %gf + Zﬂ%L + 8¢5, (4.14)
u 3 u ut
Hi = Svpsvpt, (4.15)

in the range I. Here, the coupling constant g1 = g1z g In
the range IT is that for the U(1) operator (1/2)Yzr which
is defined by the relation

1
Q=IF+1f+ ~vig,

5 (4.16)



for the symmetry SU(2), x SU(2), x U(1), , while the
coupling constant g1 = g1y in the range I is that for the
U(1) operator (1/2)Y which is defined by the relation

1

for the symmetry SU(2); x U(l)y,, and they are con-
nected by

(4.17)

_ 5 _
0Th(AL) = 03} (An) + Doife(A) . (418)
5 2
ganf '(ARr) = oy (AR) + 3a1LR(AR) ; (4.19)

where a; = g7 /47,
Similarly, the terms TIJ;, GJ;( H};L and H};R (f =
u,d,e) are given by

TE = T8 = TS = 3Tr (YL“SYL“T + YgSYgT) . (4.20)

5 9 9
=G = §g% + Zﬂ%L + 1953 +8¢3 ,
.9, 9 9
G = 591 + 7950+ 795m » (4.21)
u d 3 u ut e
Hgy=Hgy = §YASYA , Hga=0, (A = LaR) )
(4.22)
in the range II, and
TE = Td = T8 = 3Tr (YLUSYL“T) , (4.23)
L 1T, 9
K =550t gzL + 843
. 5 9
G = 2091 + gzL + 843 (4.24)
. 45 9
Gk = 209% + ggL ,
U d 3 u ut f
Higp=Hgp=35YpSYp , Hgp=0, f=ud,
(4.25)
Hiep = Hien =0, (4.26)

in the range I.

The terms 7%, G% and H¥; have rather simple forms
in contrast with those in the conventional neutrino see-
saw model, because the partners of the fermions f;, which
couple to the Higgs scalar ¢y are not fg, but Fr which
are already decoupled at u = Ag:

TY = 6Tt (YL”SYL“T) , (4.27)

=363, , (4.28)

HY; = Agp (4.29)

in the ranges I and I1, where Mg is the coupling constant
of the Higgs scalar ¢ defined by

Hg = %AHL(ququL)? , (4.30)

and the mass of the physical Higgs scalar H} is given by

mirp = 22 (91)° (4.31)

The similar coefficients in the minimal SUSY model
are given in the Appendix.

V. CASE OF THE DEMOCRATIC SEESAW
MODEL

In the democratic seesaw model, on the diagonal basis
of YLf (Ax) and Yé (Ax), the Yukawa coupling constants
of heavy fermions YSf (Ax) are given by the democratic

form (1.11). Since on this basis the Yukawa coupling
constants YSf keep the forms democratic:
Y (n) = €5 () (1+ 365 () X) (5.1)

we will call this basis the “democratic basis of Mp” here-
after. On the other hand, if we take a basis on which YSf
are diagonal, i.e., the matrix forms are given by

V(0 =€ (1430, %) | (5.2)

X = AXAT = diag(0,0,1) , (5.3)
1 1 0
A

A= ? ? —% (5.4)
VARV

Especially, on this basis, the Yukawa coupling constants

(YS)“ and (YS )ii of the fermions F; and U; satisfy the
relations

V5 ()] = VS ()22 = [V ()]ss = €5 (1), (5.5)

V3 (0l = [V (W22 = €4(w) . (Wl =0, (56)

in the range ITT (As < pp < Ax), i.e
by(p) = —1/3. (5.7)

On the other hand, on this basis, the Yukawa coupling
constants 17{ (u) and ?fé (1) are not diagonal. However,
we can easily obtain their diagonal forms by AT?Lf () A
and AT?IJ%C (1) A.

At the energy scale p = Ag, the fermions F; (except
for Us) acquire the heavy masses (Mp);;. Therefore, for
i < Ag, the operators K/ are given as follows:



u 1v-ut 1 VU . (VU *
(K")ij = {YL (Ys)™Y Lj €4(As) Zl;z(YL)”“(YR)Jk ) (5.8)
-d dvrdy— 15 dt 1 dy . vy 1 Sy Ty
([X )Z] - YL (YS) Y, i|” - fg(/\s) k;;z(YL)Zk(YR)]k + 1_|_ 3bd(AS) (YL)ZS(YR)]3 ’ (59)
(K9 = VO™ = ey X G0 (5.10)
E=1,2,3
- - 1 1 - -
(K")ij = (YL”(Y§)_1YL”T)U = (hs) ;;1:,2 V)i (V) ji + TT a0, (ag) (L) )is (5.11)
In Eq. (5.11), we have assumed that the structure of Yj;(ﬂ) zé’f;(u)Zi;(ﬂ) , (5.12)

the Majorana mass term Mg(Ag) = Y& (Ag)(®°) for the
neutral fermions Ng has a structure similar to the Dirac
mass matrices M which is given by Eq. (5.1).

Since the Yukawa coupling constants Yf{ (W) (A=L,R)
in the range Il keep their forms diagonal on the demo-
cratic basis of Mg, it 18 convenient to express Yj; (1) as
follows,

= P 3(z2 + 21)
7 =AZ'AY = =

where the diagonal matrix Zf;(ﬂ) is given by Eq. (3.2).

Then, the matrix 17}; on the diagonal basis of Mp is given
by

AMESAMVAME (5.13)
where
|
—\/3(22 - 21) —\/6(22 - 21)
423 + 29+ 21 —\/5(223 — Z9 — Zl) s (514)

—\/3(22 - 21)

—V6(z9 — 21) —V2(223 — 29 — 21)

(we have dropped the indices A and f, and for simplicity,
we have taken (5{ = 0). Although the Yukawa coupling
constants ?L“ and ?ﬁ in the range IT and ?Lf in the range
I have the physical meaning only for the one column ma-
trix components (17};)23 (i = 1,2,3), we still use the ex-

Z|Y“ ))is|* = (61 )€1 (p 1/ Z|ZL2|2__ (1) -

The expression (5.15) is valid in the whole ranges Ap <
p<Ax.
Since

2 2
sE+am+)=3, (516)

we obtain

2(z3 + 22 + #1)

pressions (5.12) and (5.13), because the matrix K¢(p)
(AL < p < Ag) which is proportional to Yf(ﬂ)YET(u) is
still diagonal on the democratic basis of Mg as discussed
in Sec. IV, so that we regard that Y} (x) is also “diago-
nal”. Then, the top quark mass m.(u) is approximately
expressed as

(5.15)

287 (&R (1) (67 )(dk)
3 & (@)

me(p) + ma(p) ~ (5.17)

from Eq. (5.8). Note that the expression (5.17) is valid
only in the range III. In the ranges I and II, the ra-
tio E¥EL /&Y behaves as a operator K¥(u) which obeys
Eq. (3.12). From Eq. (5.17), the ratio m./m; is given by



me(p) 2 Ep(p) (PR)
me(p) — /3 EL(p) (9°)

Since Hf-; = Hf p = 01in the ranges I and II, the form
of K¢(pt) is invariant in the ranges, i.e.,

(5.18)

ZE(AL)ZH (ALY = 75 (As) 25 (As) (5.19)
especially, since
ANESAMEFAME (5.20)
for a model with g2r(ARr) = g20(AR), we obtain
Z¢(AL) = Z°(Ag) . (5.21)

Therefore, in preliminary evaluations prior to fixing the
final values of the parameters, we will sometimes use the
values of z;(mz) which are obtained from the observed
charge lepton masses m$(mz) by using Eq. (1.7) instead
of the values of z;(Ax) which are defined in Eq. (1.9) as
the initial condition at p = Ax.

VI. NUMERICAL RESULTS IN THE NON-SUSY
MODEL

We define
AL =(87), Ar={(¢%), As= (2% .

However, for convenience, in the numerical evaluations,
instead of physical quantities at g = Ay, we will use those
at g = myg (mgz is the neutral weak boson mass).

First, in order to overlook the behavior of the Yukawa

(6.1)

coupling constant YLf (1), we illustrate the behavior of
&% (p) in the non-SUSY model in Fig. 1. Here, we have
used the approximate relation (5.15) and the input values

m(mz) = 181 GeV and (¢%) = 174 GeV:

u _ mt(mz) _
€L(mz)—\/§7<¢%> = 1.80.

In other words, the behavior of £ (1) corresponds to that

of my(j1) becauise of €% (x) = (my()/mi(mz))Ex (mz).
In the ranges I and II, since the terms T} and H} are

(6.2)

expressed only in terms of ?L“S?LUT, the evolution of the
factor €% (p)|* = 3Tr[YL“SYLuT] is described by the equa-
tion

167TZE|5L|2 =2 [<§|§L|2 - GL) €717 + §|€L|4] :
(6.3)
However, in the range 111, the terms 77 and H} contain
other factors YLfYLfJr in addition to YL“YLUT, so that the
evolution of £ cannot be expressed so simply such as

(6.3). For the evaluation of £} in the range III, we have
tentatively substituted the values z;(mz) given by (1.7)

for the initial values z;(Ax). For simplicity, as we dis-
cussed in (4.7), we have taken as ¢gor (Ar) = g2r(AR). In
Fig. 1, the ratio As/Ag has been taken as Ag/Ag = 107,
which has determined from the fitting of the observed
ratio m;/m, as we discuss later. The behavior of £} (u)
is insensitive to the ratio Ag/Ag. As seen in Fig. 1, in
a case with a lower Ag (Ag < 10° GeV), &} (p) has the
Landau pole below pn = Ax, so that the case is ruled out.
On the other hand, a case with a higher Ag (Ag > 10*°
GeV) causes ay(p) = oo at g — Ag, so that the case is
also ruled out.

Taking account of the behavior of £¥(u) shown in
Fig. 1, as a trial, we take

Ax =2 x 10 GeV | (6.4)
which is known as the unification energy scale in the min-
imal SUSY model. (However, in the present paper, we
do not consider the gauge unification.) As a value of Ag,
we tentatively take
As =3 x 10" GeV | (6.5)
which leads to the mass-squared difference Am3, =
m2 —m? ~ (1073 — 1072)eV? as we demonstrate later.
For the values (6.4) and (6.5), we obtain &} (Ax) = 1.2.
Next, we determine the values of £%(A) and Ag/Ag.
Since we have already obtained the value &% (Ax) = 1.2,
it seems that we can fix the value of £%(A)As/AR from
the observed value of m;(mz)/m.(mz) because of the re-
lation (5.18). However, the value of £%(Ax) [also &’g(AX)]
is sensitive to the value of £%(Ag) [&’é(AS)] [in other
words, a small deviation of &’g(AS) causes a large de-
viation of &’é(AX)] Therefore, we cannot fix the values

£¥(Ax) unless we put a tentative model for €£R and fé
The basic assumption in the universal seesaw model is to
consider that the mass matrices my and mpg in Eq. (1.1)
are “universal” (common) for all fermion sectors (quarks
and leptons). Therefore, we put the following initial con-
dition
Eir(Ax) = £l p(Ax) = & r(Ax) = € p(Ax) = &Lr(Ax) -
(6.6)
Then, a model with £%(Ax) = 4(Ax) = £4(Ax) is obvi-
ously ruled out because we cannot give the observed val-

ues of quark and charged lepton masses simultaneously.
We must consider

£6(Ax) = €§(Ax) = €d(Ax) # & (Ax)

We tentatively put £€5(Ax) = &Lr(Ax). The numerical
results are as follows:

(6.7)

Eor(Ax) =€5(Ax) =120, €E1(Ax)=080, (6.8)

As/Ag = 107 , (6.9)



2 = 001617, 2,=02349 , z3=09719. (6.10)

In the quark and charged lepton mass expressions (3.19)
the factors £Z and &% appear only in terms of the com-
binations £{Ag and £5 A, respectively, so that the abso-
lute values of £§ and ¢ depend on the choice of the input
value of Ag. Only the ratio £5/¢% is substantial for the
fitting of the quark and charged lepton mass. (However,
as we state in the Sec. VIII, the neutrino mass differ-
ence between m,3 and m,, rapidly varies in the range
III. Therefore, in the neutrino mass matrix, the choice of
the input value Ag is important.) We can obtain

E5(Ax)/¢E(Ax) ~ 15,

for any initial values of £%(Ax) with O(1). The val-
ues (6.10) are nearly in agreement with the values z;
0.01622, zo = 0.2357, and z3 = 0.9717 which are obtained
from Eq. (1.7) at g = mz. We can see that the effect of
the evolution is not so large for Z°.

The value of the parameter bgy(Ax) is determined
from the fitting of the observed down-quark mass ra-
tios mg/ms and mg/mp and the CKM matrix param-
eter |Vys(mz)| = 0.22. In Fig. 2, we illustrate the mass
ratios mgq(p)/ms(p) and m,(p)/me(p) and the CKM
parameter |V(p)| at g = my versus the parameters
bg and B4, where we have re-defined the complex pa-
rameter by by bge'®® with two real parameters. For
convenience, in Fig. 2, the quantities are expressed in
the unit of the corresponding observed values at u =
myz (for example, in Fig. 2, the curve mg/m; denotes

[md(ﬂ)/mé’ (ﬂ)]uzmz/[md/ms]observed)~ We obtain

(6.11)

ba(Ax) =—120, pF4(Ax)=19.2°, (6.12)
which give the following predictions at pp = my:
my(mz) = 2.60 x 1072 GeV |
me(myz) = 6.92 x 107! GeV |
me(mzg) = 182 GeV |
my(my) =4.38 x 1072 GeV ,
mg(mz) =9.84 x 1077 GeV | (6.13)

3

)
)
b(mz) = 3.02 GeV s
c(mz) =4.90 x 107* GeV |
u(mz) =1.03 x 107! GeV |
(my) = 1.76 GeV .

3

3

m-\Mmyg

The experimental values corresponding to the results

(6.13) are as follows [10]:

my(mz) = (2.337532) x 1073 GeV |
= (6.85T030) x 107! GeV |
= (181 + 13) GeV ,
= (4.697052) x 1073 GeV
= (093475138 x 107! GeV
=(3.00£0.11) GeV ,

(6.14)

10

me(myz) = (4.8684727 £+ 0.00000014) x 10™* GeV |
mu(mz) = (1.0275138 & 0.0000033) x 107" GeV |,
m,(mz) = (1.7467 £ 0.0003) GeV .

The results (6.13) is in agreement with the observed val-
ues (6.14) within the experimental errors.
The predicted values of |Vj;| depends on the phase pa-

rameters (5{ given by Eq. (1.4). Only when we take those
as (1.8) (at g = Ax), we can obtain reasonable values
of |V;;]. For example, for 6% — 8¢ = 7, we obtain the
predictions at g = my

|Vu5| =0.220 s |Vcb| = 0.0668 ,
|Vus/Ves| = 0.0558
|Viq| = 0.0177 (6.15)
J=325x%x1075.
The observed values [11] are
[Vis| = 0.2196 + 0.0023
|Vep| = 0.0402 & 0.0019 | (6.16)

|Viw/Ves| = 0.090 £ 0.025 .

Although the results (6.15) are roughly consistent with
experiments, the value |Vz| = 0.066 is somewhat large
compared with the observed value |Vz| = 0.040. This
discrepancy can be adjusted by considering a small devi-
ation from 7 of the relative phase 6% —d¢ as demonstrated
in Ref. [5].

Related to the phenomenological requirement (1.8), it
is interesting to consider that Y7 which is the coefficient

of the Higgs scalar quL is related to Y which is the coef-
ficient of the scalar ¢ as

Y (Ax) = [V (Ax)]T (6.17)

Then, the relations (1.8) mean that (YLf)H and (YLf)zz

are real, while (YLf)gg is almost pure imaginary. We take

(7)1 = 27 = diag(z1, 22, 73¢') . (6.18)

The parameter d3 (= 4§ —0%) does not affect the
masses, but only the CKM mixings. It is interesting to
consider that the parameter d3(Ax) takes its value such
as the CKM mixings become minimum, i.e., such as the
value 3. |Vij(Ax)|* takes the minimum. This require-
ment gives the initial value d5(As) = 84° (see Fig. 3).
Then, we obtain the predictions of |V;;| at 4 =myz

|Vus| = 0.220 , |Ve| = 0.0418
|V /Vep| = 0.0726

|Via| = 0.0109 ,
J=238x107° .

(6.19)

which 1s in excellent agreement with the experimental
values (6.16). In Fig. 4, we illustrate the predicted val-
ues |Vij(mz)| versus d3(Ax). As seen in Fig. 4, the value
of d3(Ax) at which Z#j |Vij(Ax)|* takes the minimum
also gives the minimum of the CKM mixings at 4 = my.



VII. NUMERICAL RESULTS IN THE SUSY
MODEL

The behavior of £} () in the SUSY model is somewhat
different from that in the non-SUSY model. Since in the
SUSY model, the top quark mass mq(y) is given by

vL

V2

where vz, /v/2 = 174 GeV and tan 3 = tan 3 = v¥/v¢,
the initial value of £¥(mz) in the SUSY model corre-
sponds to

sin 3, (7.1)

1 U
me(p) = %&(u)

U U 1
[ (mz)]svsy = [€L(m2)]honsvsy m . (7.2)
However, this does not mean [(¥(Ax)]susy =
E¥(Ax)]nonsusy /sin 3,  because the behavior of

€} (w)]susy 1s considerably different from that of
[E¥ (1)lnonsusy. In Fig. 5, we illustrate the behavior
of £¥(p) in the SUSY model for the case of tan 8 = 3.5.
If we take tan g < 2.5, the initial value of &} (myz) be-
comes &Y (myz,tan 8 > 2.5) > &Y (myz,tan 8 = 2.5) from
Eq. (7.2), so that the curve of &¥(p) will be illustrated
in the upper side of the curve given in Fig. 5. There-
fore, for a case with a small value of tan 3, the Landau
pole of &} (p1) appears at a relatively lower energy scale.
We consider that the model should be calculable per-
turbatively, so that a case with such a large value of £}
should be ruled out. As seen in Fig. 5, since the model
gives, in general, ¥ (Ax) > & (p) (mz < p < Ax),
the value £} (Ax) should, at least, be [} (Ax)]?/47 < 1,
ie., £ (Ax) < V4r = 3.54. However, when we take
contributions from the higher order corrections into con-
sideration, even the value £% (Ax) = 3.0 is still dangerous.
Therefore, we put the constraint £} (Ax) = 2.0 for the
results of the present one loop calculation. In Fig. 6, we
illustrate the predicted value of m:(mgz) for the initial
values ¥ (Ax) = Var = 3.54 and & (Ax) < 2.0, where

we have used the input values

Ax =2x 10" GeV , Ag=6x 10 GeV . (7.3)
The value of Ag has been chosen as the neutrino mass-
squared difference Am3, is of the order of (1073 —1072%)
eV?e,

From Fig. 6, we conclude that the value of tan 8 must

be

tanf3 2 3 . (7.4)

Prior to the numerical investigation of the evolutions in
the SUSY model; in order to see the difference between
the parameter structures in the non-SUSY and SUSY
models,; let us give a rough sketch for the parameters in
the case of the SUSY model by neglecting the evolution
effects. The quark mass matrices M, and M, are given

by

11

(Mu);; = ZZ: (Z)zk (Z)]k (0% g%g}é A/L\ZS\R

sin 3,

B
I
—

(7.5)

N (s ded ApA
(Ma);; = Z (Z)Zk (Z)jk (Od)kk géR /L\SR cos 3,

(7.6)

where O% = diag(1,1), O¢ = diag(1,1,1/(1 + 3b4)), and
7 is given by Eq. (5.14). Here, for simplicity, we have
assumed f; = Br = fBs = F. For tan g > 3, the fac-
tors sin § and cos § are approximated as sin 3 ~ 1 and
cos 3 ~ 1/ tan 3, respectively. Obviously, the model with
€% = ¢4 in addition to the constraint

Eir(Ax) =& R(Ax) =l R(Ax)

is ruled out, because we cannot fit the up- and down-
quark masses simultaneously due to the existence of the
factor cos 3. Therefore, we must consider a model with
&4 +£ ¢4 differently from the constraint (6.6) in the non-
SUSY model. If we consider

: d
gixglsing, €l gheoss,

(7.7)

(7.8)

then the model becomes similar to the case of the non-

SUSY model, because

1R ALAR in 7 ~ et ALAg
£ As T Ag

and we will obtain reasonable fittings for the quark
masses and CKM matrix parameters as well as in the
non-SUSY model. Note that for a large value of tan g,
the value of K¢ = 5%5;!2/@ becomes large because K¢ ~
K" tan 8 from the relation (7.9), so that we cannot eval-
uate the RGE (3.12) perturbatively. We must take the
value of tan 8 near to the lower bound given by Eq. (7.4).

When we take the evolution effects into consid-
eration, the situation is further complicated. The
evolutions of €£(u), 5};(#) and E’g(u) in the SUSY
model are quite different from those in the non-
SUSY model. We illustrate the behaviors of
m{ (u)/mfC (Ax) which correspond to the behaviors of
(€7 (1)&R (1) /€L [E7 (Ax)éR (A x) /€5 (Ax)] in the non-
SUSY model and those in the SUSY model in Figs. 7
and 8, respectively. In Fig. 8, we see that the values
my (@) and me(p) cause rapid changes in the range I11.
In the non-SUSY model, the charged lepton mass ratios
are almost invariant, i.e., m.(p)/m,(¢) ~ constant and
mu(p)/ms (1) ~ constant, while, in the SUSY model,
the mass ratio my (1) /m, (1) shows a considerable change
(although me (1) ~ m,(p) still holds).

The situation is critical for the input values. If we
adhere to the input value m;(mz) = 181 GeV, then it

cos 3, (7.9)



is hard to obtain reasonable values of the other quark
mass values m¢, my, mp, ms and my for any parameter
values of Ag/Ag and by. However, if we take a slightly
lower value of m;(mz), for example, my(mz) = 168 GeV
[cf. [me(mz)]opservea = 181 £ 13 GeV], we can find the
following parameter values

tan 3 = 3.5,

As/Ag =38, (7.10)

2 = 001449 | 2, = 02117, z3=09772, (7.11)
i r(Ax) =& r(Ax) =€ R(Ax) = 13, Er(Ax) =10,

(7.12)

EH(Ax) =17, €i(Ax) =050, &5(Ax) =10,
(7.13)
by = —1.2,

By =19.4° (7.14)

which leads to the following quark and charged lepton
masses and CKM matrix parameters:

my(myz) = 247 x 1072 GeV |
me(myz) = 6.46 x 107! GeV |
me(mg) = 167 GeV |
ma(mz) = 4.49 x 107 GeV |
ms(mz) = 1.00 x 107! GeV (7.15)
mp(mz) = 2.83 GeV |
me(myz) = 4.87 x 107* GeV |
my(mz) =1.03 x 107 GeV
m.(mg) = 1.75 GeV |
[Vis| = 0.220 , |Vep| = 0.0665 ,
|Vaub/Ver| = 0.0603 ,
[Via| = 0.0179 , (7.16)
J=338x107".

The values |V;;|* are again desirably adjustable by the
phase parameter d3 defined by (6.18).

VIII. EVOLUTION OF THE NEUTRINO MASS
MATRIX

The evolution of the neutrino mass matrix M, =
K¥(¢9)2/(®%) is described by the RGE (3.13). Since
the coeflicient H-; in the ranges I and II is given by
HY, = Amr, (4.28), for the non-SUSY model, and by
HY, =0, (A.15) and (A.24), for the SUSY model, the
form of the matrix K at 4 = Ag does not vary from that
at 4 = Ag, so that the mass ratios and mixing matrix U,
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are also invariant. Since the coefficients H; and H§ 5 in
the charged lepton sector are given by Hf,;, = Hip =0
in the ranges I and II for the non-SUSY and SUSY mod-
els, the form of the charged lepton mass matrix M, is also
invariant below y = Ag. Therefore, the Maki-Nakagawa-
Sakata (MNS) [12] matrix U = UJLUV is invariant in the
ranges | and II. Note that in the conventional model, the
neutrino seesaw mass matrix can vary the from. The
neutrino mass matrix in the present model can vary the
form only in the range ITT (Ag < ¢ < Ax). The reason is
that in the conventional model the scalar QS'IL' couples to
vier, while that in the present model couples to vy, Fg,
so that the contribution of ¢1 to H%; in the latter case
is decoupled below p = Ag.

For the numerical study, the case with b, = —1/2
1s most interesting, because the inverse matrix of
Yi(Ax) = €4(Ax)[1 4 3b, (Ax)X] with b, (Ax) = —1/2

has the form

. 1 011
veax) =t 101}, s
’ &Ux) V110
so that

0 2129 712
V(A2 122 2173
v o) = LR T
¢5(Ax) 2123 2223 0

(8.2)

The form (8.2) is well known as the Zee-type [13] mass
matrix, which can lead to a large mixing [14].

The mass eigenvalues m,; and mixing matrix U at
p# = Ax are given by [15]

my1 ~ —2zimb

Mys ~ — [z223 — (1 — ;73) zf] my (8.3)
2
<3 2 v
mys ~ [z223 + (1 + g) zl] myg
2
(£7)* AZ
SRS ZAN 2 4
mO gg AS ’ (8 )
1 \%j—;(l—zz) %j—;(l—l—zz)
21 1 1
U=| -3 \/—% —1% (8.5)
T 7

The model with b; = —1/2 gives highly degenerate mass-
squared levels m2, ~ mZ; and a large mixing between v,
and v, at g = Ax. Therefore, the model has a possi-
bility that it can give a reasonable explanation for the
atmospheric neutrino data [16].

In Figs. 9 and 10, we illustrate the behaviors of the
mass-squared differences Am?;, = m? — m? in the non-

SUSY and SUSY models, respectively. As seen in Figs. 9



and 10, the mass-squared difference Am3, rapidly in-
crease according as the energy scale decreases in the
range III. The numerical results are given in Table II.
We can see that the neutrino mass ratios are invariant in
the ranges I and II.

As we stated already, the values (z1, 22, z3) (therefore,
the mass ratios m./m, and m,/m.) are almost invariant
in the range III, while the ratio Am2,/Am2, is rapidly
vary in the range ITI. Although the relations (8.3) give
Am3, ~ 4272923(mb)? and Am3, ~ (2923)%(m})?, the
rapid decrease in the ratio Am32,/Am%, does not mean
the rapid decrease in the ratio 2%/2523. The rapid de-
crease comes from the slight deviation of the parameter
b, (p) from the value b, (Ax) = —1/2. The value of by (1)
is not invariant in the range III, although the form of
YSf (), “the unit matrix plus a democratic matrix”, is
invariant. When we denote

1

by(p) = =5 (L+eu(n)) (8.6)
the expression (8.1) is replaced with
B 1 —2¢, 1 1
Vs (W] ~ AR —216u _216V , (87)
so that
vy =l (T G o
65(“) Z123 2923 —261,232)
(8.8)
Therefore, the mass eigenvalues in the range I1I are given
by
myp ~ —2(1 4+ 361,)zfm16 ,
Mys ~ — [zzz;), — (1 — 22732) 224 61,:| mg (8.9)

2

1+Z—3 zy

222

)

instead of (8.3), and the mass squared differences Am3;
and Am32, are given by

v
mys =~ [z2z3 + ( — 61,:| mg ,

Ami, ~ (z323)°(mf)*

Am3, ~ 42223(2% — 61,)(m16)2 . (8.10)
Note that the approximate expression (8.19) tell us that
Am3,(u) takes a zero between p = Ax and g = Ag be-
cause £,(Ax) = 0 < z¥(Ax) ~ 2} (Ag) < £,(Ag), eg.,
e,(Ag) = 7.3 x 1072 and 27(Ax) ~ z¥(Ag) ~ 2.6 x 1074
for the non-SUSY and ¢,(Ag) = 1.1 x 1072, z¥(Ax)
2.1x107* and 27(Ag) ~ 2.6 x 10~ for the SUSY model.
In fact, we can see this at a point which is very close to
p = Ax in Figs. 9 and 10. Thus, the value of Am3,(p) is
highly sensitive to the value of ¢, (x), although Am%, (p)
is not so.

~
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In general, since the mixing angle 653 is given by

2(M,
sin 2053 ~ & ,
my3s — Myy

(8.11)
the mixing angle #23 in the conventional democratic type
neutrino mass matrix model is sensitive to the energy
scale [17], because Am2,(u) has a large energy scale de-
pendency. In contrast to the conventional model, the
mixing angle #s3 in the present model does not so dras-
tically vary. The reason is as follows: the neutrino mass
matrix M, in the present “democratic” seesaw model is
not democratic, i.e., the form of M, is given by Eq. (8.2).
In fact, the present model gives not m,s ~ m,s3, but
Mmys >~ —m,3, so that the evolution effect on Usz is not
so sensitive as seen in Eq. (8.11).

As seen in Table II, the model can fit the value Am2,
to the atmospheric neutrino data [16] (Am3y)ebsers =
3.2 x 1073 eV? by adjusting the value of Ag, but it can-
not give any explanation of the solar neutrino data [18];
because of Am2, > Am3, = Am?, . We must intro-
duce a further mechanism for the explanation of the so-
lar neutrino data, for example, as discussed in Ref. [19].
However, since the purpose of the present model is not
to propose a plausible neutrino mass matrix model in the
framework of the USM, but to see the characteristic fea-
tures of the neutrino mass matrix evolution in contrast
to the conventional seesaw model. Therefore, we do not
touch the numerical fitting furthermore.

IX. CONCLUSIONS

In conclusion, we have investigated the evolutions of
the quark and lepton mass matrices My (f = u,d,v,e)
in the universal seesaw model with detMp = 0 in the
up-quark sector ' =U.

The assumptions which have made in the present paper
are classified into the following three categories:

(A) Basic assumptions in the universal seesaw model with
detMU = 0;

(B) Basic assumptions in the democratic seesaw model
[4,5] (we have taken the model as a more concrete one of
the universal seesaw model with det My = 0 in order to
give an explicit evaluation of the universal seesaw model);
(C) Tentative assumptions for convenience of the numer-
ical evaluation.

The assumptions in the category (A) are as follows:
(A1) SU(3), x SU(2); x SU(2)p x U(1)y x U(1) 5 gauge
symmetries with the symmetry breaking pattern (2.1);
(A2) Hypothetical heavy fermions F (U,D,N, E)
which belong to (1,1) of SU(2), x SU(2)p, and acquire
masses of the order of Ag at the energy scale p = Ag
except for Usy, and Usy,.

In the present model, therefore, the quark and charged
lepton mass matrices My (f = u,d, e) and neutrino mass
matrix M, are given by



My =Y] (Y)Y (ALAR/As) (9.1)

M, = Y7 (Y§) (YT (AL /As) (9.2)
except for the top quark, where Ap = (¢%), Ar = (¢%)
and Ag = (®"). The evolutions below y = Ag are de-
scribed by the RGE (3.12) and (3.13) for the seesaw op-
erators. On the other hand, the top quark mass my ()
given by the expression (3.18) is still described by RGE
(3.6) for the Yukawa coupling constants below y = Ag.
Although the heavy fermions F' do not contribute to the
evolutions below g = Ag, the third family “would-be”
heavy up-quark Us can contribute to the RGE even be-
low p = As. However, as far as the H};L (F = v,e)
and Hf p terms in the lepton sectors are concerned, the
would-be heavy quark Us cannot contribute to those, so
that the forms of the mass matrices M, (y) and M, ()
are invariant below g = Ag.

The assumptions in the category (B) are as follows:
(B1) At a unification scale ¢ = Ax, the Yukawa cou-
pling constants YLf and Yé have the same form, i.e.,
Vi (Ax) = Vi (Ax) = Y{p(Ax).

(B2) At 11 = Ax, the heavy fermion mass matrices Mp
(therefore, the Yukawa coupling constants YSf) [and also
the Majorana masses My (Mg) of the neutral fermions
N1 (Ng)] take a simple diagonal form (5.1), the form “
the unit matrix pulse a democratic matrix”, on the basis
on which the Yukawa coupling constants YLfR(AX) are
diagonal. Then, the form (5.1) is invariant under the
evolution in the range III.

(B3) The values of the parameter b; in the matrix YSf
given by Eq. (5.1) are given by b, = 0, b, = —1/2 and
by = —1/3 at = Ax. (The value by is kept as a free
parameter in order to fit the up- and down-quark masses
and CKM matrix parameters reasonably.)

In this model, the top quark mass m(y) is given by
(5.15). The behavior of mqy(p), ie., £¥(u), is given in
Figs. 1 and 5 for the non-SUSY and SUSY models, re-
spectively. We can obtain the constraint on the values of
the intermediate energy scales Ar and Ag by considering
that the model should be calculable perturbatively. In
the non-SUSY model, since Ag/Ag ~ 10? from the ratio
my/m., we find the constraint

101 GeV < Ag < 10" GeV , (9.3)

for Ax ~ 10'® GeV. In the SUSY model, the results
highly depend on the input parameter tan 8. From the
numerical study, we obtain the constraints

I<tanp < 4, (9.4)

101 GeV < Ag < 10" GeV , (9.5)

for Ax ~ 10 GeV. (The above numerical results are
slightly dependent on the assumptions stated below, but
the dependence is not so large.)

The assumptions in the category (C) are as follows:
(C1) For convenience of the numerical evaluation,
g2r(#t) = g2r(p) has been assumed. Then, we can as-
sert YLf (1) = Yé(ﬂ) in the range IIT (As < ¢ < Ax) as
we have shown in Eq. (4.8).

(C2) For evaluation of the non-SUSY model, the initial
condition

Eir(Ax) =&l r(Ax) = ELp(Ax) = €7 R(Ax)

has been assumed together with the initial condition

(3.5), ie.,

(9.6)

ZE/R = Zg/R = ZE/R = ZZ/R : (9.7)
However, since there is no solution of the parameter val-
ues for the SUSY model under such a constraint (9.6),
the constraint corresponding to (9.6) in the SUSY model
has been loosened as

Eir(Ax) =& R(Ax) # & r(Ax) = &7 R(AX) |

although the initial condition (9.7) has still been required
in the SUSY model.

(C3) For the non-SUSY model, we have assumed
E4(Ax) = ¢(Ax) # ¢5(Ax) = &%(Ax), but, for the
SUSY model, we have assumed that each value of E’é(/\)
may be different among them, because the previous
condition is too strong for the SUSY model and the
up<rdown symmetry is already broken due to the fac-
tor tan # # 1 in the SUSY model.

In the conventional model for quark and charged lep-
ton masses (i.e., not seesaw model), the following approx-
imate relations are satisfied in the non-SUSY and SUSY
models:

(9.8)

(ma/me)r | (ma/ms)r_ (me/mu)r | (mu/mo)r
(mu/me)x — (ma/ms)x — (me/myu)x = (mp/m-)x —
(9.9)
(mu/me)r  (me/mi)r
(/) x> (e fm)x 14+¢ey,, (9.10)
(ma/mo)r_ (ms/mo)r
(ma/mo)x = (e fmo)x = 1+4+¢4, (9.11)
Veo(AL)l _ Ve (Az)| _ [Via(AL)] ~ld4es, (9.12)

Veo(Ax)l — Vs (Ax)| — Vea(Ax)|

where (my/m¢)r denotes my(Ar)/me(Ar), and so on.
The relations (9.9)-(9.12) are due to that the Yukawa
coupling constant y; of the top quark in the conventional
model is very large compared with the other Yukawa
coupling constants. In the present model, as seen in
Figs. 7 and 8, the relations (9.9)-(9.12) are also satis-
fied in the range T (A < ¢ < Ag) (so that we read the



relations (9.9)-(9.12) as X — R). The values of ¢, and
€4 are approximately given by &, ~ ¢4 for the non-SUSY
model, and by ¢, >~ —3¢4 for the SUSY model. In the
range IT (Ar < p < Ag), the relations (9.9)-(9.12) are
slightly broken. In the SUSY model, the values show not
ey ™~ —3eg4, but g, ~ £4 in the range II. However, in the
model with Ay /Ag > 1, which is required in order to
make the neutrino masses tiny, the evolution effects in
the range Il are not so large, so that we can regard that
the relations (9.9)-(9.12) are still satisfied in the range
Ap < p <Ag, e,

Dur) = BB 4 2) (- £,5)Du(As) (913
Da(Ar) ~ :‘;Et;u +ea)(1 —eaS)Da(As) ,  (9.14)

V(AL) ~ (1 + 6vS)V(A5)(1 + 6vS) — 2ev ViaS (9.15)

where D, = diag(m,, me,m:), Dg = diag(mg, ms, mp),
and S is defined by Eq. (4.9). In the present model, the
value of ¢y is not always given by ey >~ ¢4 because of the
presence of the range II.

Also in the ranges I and II, differently from the con-
ventional seesaw model (for example, see Ref. [2]), the
neutrino mass ratios and mixing angles are not affected
by the evolution effects:

myi(Ar)/my;(Ar)

~1, 9.16
myi(As) /o (As) (919
Vij (AL)
—— ~ 1. 9.17
Vs (hs) 917
Note that the relation (9.16) does not mean
Am?j(AL)/Am?j(AS) ~ 1. However, the ratio

AmZ,/Am3, is again invariant in the ranges I and I1.

In the range TIT (As < ¢ < Ax), the relations (9.9)-
(9.12) [(9.13)-(9.15)] and (9.16)-(9.17) are not satisfied
at all. For example, the behavior of Am2,(u) is highly
sensitive to the value £, (;t) and is given by Eq. (8.10). In
other words, the differences of the numerical behaviors of
the quark masses, CKM matrix parameters and neutrino
mass squared differences from those in the conventional
model are substantially formed in the range III.

Note that the mass ratios m./m, and m,/m. are
almost constant (although the ratio m,/m. is slightly
changed in the SUSY model), so that the phenomenolog-
ically well-satisfied relation (1.14) still holds under the
evolutions.

For the neutrino mass matrix M, , we have investigate
the model with b, (Ax) = —1/2, which leads to a large
mixing sin? @23 ~ 1. Although the mass-squared differ-
ence Am3,(u) is highly sensitive to the energy scale u
in the range TIT (As < p < Ax), the mixing angle 03
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i1s not sensitive to the energy scale. In contrast to the
conventional seesaw neutrino mass matrix, note that the
present neutrino mass matrix M, is form-invariant below
1 = Ag, so that the neutrino mass ratios and mixings are
invariant below p = Ag.

In the present paper, we have assumed SU(3). x
SU(2); x SU(2)z x U(1); p x U(1)x symmetries above
# = Ag. Asseen in Figs. 1 and 5, in general, the rapid
increasing of the Yukawa coupling constant Y} () causes
above u = Ag, although we have been able to find a set of
the reasonable parameter values without having the Lan-
dau pole below p = Ax. The rapid increasing is mainly
due to the rapid increasing of the gauge coupling con-
stant g; above p = Ag. If we want to build a unification
model with a unified gauge symmetry G, we may consider
that the U(1) symmetry is embedded into the unified
symmetry G. (For example, see an SO(10), x SO(10),
model [20], where SO(10); x SO(10)x is broken into
[SU(2) x SU(2)" x SU(4)]z x [SU(2) x SU(2)’ x SU(4)]r.)
Then, the gauge structure above yu = Ag is different from
the present model, so that the evolutions will be also
different from the present results. (Of course, the evo-
lutions below p = Ag are still the same as those in the
present paper.) It is likely that the gauge structure above
1 = Ag i1s different from the present model. Our next
task is to investigate what gauge structure above = Ag
is promising for a unified description of the quark and
lepton masses and mixings.
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Appendix

In Secs. 4 and 5, the coefficients of RGE (3.6), (3.12)
and (3.13) have been given only for the case of non-SUSY
scenario with one SU(2)-doublet Higgs scalar. In the
present Appendix, we give the coefficients of RGE in the
minimal SUSY scenario.

[Range III]

T =15 = 3T (VYA + Tr(vE YL,

T =75 =3Te(YIVIN + Te(vSYeh, (A.1)
. 13 16
G4 = ggf + 3¢5 + ggi + 9%
7 16
GY = 91+ 303 + 503 + g%,
L9
GY% = =g} + 393 + g%, (A2)

6



.27
G = 591 +305 + g%,

HY =3y3y it 4 ydydt
HY =3yivit 4 yyyit
HY =3Y5y T 4 v5y e
HG =3y5y S+ vyt

TY =T¢ = 3T (VEYeh) + Tr(vE v,
T¢ =75 = 3Tr(vY ) + Tr(vEveh),

L8 16
Gs = 39% + 3932, + 39%,
9 16
Gé =297 + =95 + 3%,
3 3
% = 39%,
.18
G = ggf+3g§(,

Hi =2v{vIT

where A =L, R and f = u,d,v e.

[Range II]
TY = 3Tr(Y4SY LTy,
.13 16
Ga= Fﬂ% +3954 + ?gga

HY =3vysyet,

T = 3Te(YESY + YESYET),
Ti =Tg =0,

" . 9 9
Gy = G% = G% = =g + = (95, + 935),

2 2
u d 2 ut
Hga=Hgy = gYASYA )

Hi, =0,

T = 6Te(YASY,T),

Gl/ _9 2 9 2
K =591 + 9921,

Hi;p =0,

(A.3)

(A.6)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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where A =L R.
[Range I]
T¥ = 3Te(YESY T, (A.16)
L 13 16
Gf = —gi + 395, + =95, (A.17)
15 3
HY =3Y,SY), (A.18)

T = 3Te(YESY),

T =T =0, (A.19)
U d e 9 2 9 2
Kk =Gx =Gk = 1091 + 5921 (A.20)
U d 2 u ut
Hgp = Hgp = gYL SYL )
Hgp = H;l(R =0, (A.21)

er(L = H;(R =0,

TY = 6Te(YHSY, ), (A.22)
., 9

Gk = Eg% + 9951, (A.23)

HY., =0. (A.24)
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TABLE I. Quantum numbers of the fermions f and F' and Higgs scalars ¢, ¢r and & for
SU(2);, xSU2)g x U(1),; 5 x U(1) .

I 1 %YLR X I 1 %YLR X
uy +5 0 +z 0 ur 0 +5 +5 0
dr, -1 0 +z 0 dr 0 -1 +z 0
vy +1 0 -1 0 VR 0 +1 -1 0
er -1 0 -1 0 er 0 -1 —2 0
Ur 0 0 +z +1 Ugr 0 0 +z -1
Dy 0 0 -1 —2 Dr 0 0 —z +1
Np 0 0 +1 Ngr 0 0 -1
Ep 0 0 -1 —2 Er 0 0 -1 +1
A s {4 B S S SRS
A I S R S S 1 I I S S
OO 0 0 0 +1

TABLE II. The squared mass difference Amfj =m?, — m?,]. The values of the input parameters are the same as in Figs. 9

and 10. The absolute values of |Am12]| should not be taken rigidly, because we can adjust those by the value of Ag.

non-SUSY model SUSY model |

at = Ag at p=As at = Ax at p=Ag at p=As atu:AX|

Am3,| [eV? 2.39 x 10~ 9.32 x 10~ 3.49 x 1071 2.72 x 10~ 2.51 x 10~ 4.08 x 1077|
Am3, | [eV? 1.83 x 1072 7.15 x 1071 7.67 x 1072 1.35 x 1072 1.25 x 1072 1.01 x 1077 |
|[Am3, [ Am3, | 1.30 x 107! 1.30 x 1071 456 x 10~ 2.02 x 1071 2.02 x 1071 4.04 x 1077
Vas|? 0.485 0.485 0.500 0.478 0.478 0.500 |

Via ]2 0.00484 0.00484 0.00471 0.00492 0.00492 0.00466 |
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FIG. 1. Behaviors of ¢*(p) in a non-SUSY model for
the cases (a) Asg = 10° GeV, (b) As = 10° GeV, (c)
As = 10" GeV, and (d) As = 10'® GeV. The input values
are m¢(mz) = 181 GeV and As/Ar = 107.

14 T T T [ T T T

1 1 1 ] 1 1
O'QG 18 20 22

FIG. 2. Predictions of mq/ms, ms/ms and |V,s|, and their
dependency on the parameters by and Z4. Here, the mass
ratios are denoted in the unit of the corresponding observed
values which are quoted from Ref. [10]. The dashed, solid and
dotted lines denote by = —1.1, —1.2 and —1.3, respectively.
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FIG. 4. Predicted values of the CKM matrix parameters
|Vij(mz)| versus the parameter 5?(/\){). Other input values
of the parameters are As = 3 x 108 GeV, Ag/Ar = 107,
bd = —1.2 and ﬁd = 19.20.
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FIG. 5. Behaviors of ¢*(p) in a SUSY model for the cases
(a) As = 10° GeV, (b) As = 10° GeV, (c) As = 10'% GeV,
and (d) As = 10'® GeV. The input values are m¢(myz) = 181
GeV, Ag/Ar =38 and tan 3 = 3.5.

180

140

tan B

FIG. 6. The top-quark mass m.(mz) versus tanf in
a SUSY model. The solid and broken lines denote the
cases with the initial conditions (a) £7(Ax) = 2.0 and (b)
£¥(Ax) = VAr = 3.54, respectively. The other input values
are As = 6 x 10*® GeV and As/Ar = 38. The horizontal
solid and broken lines denote the center and lower values of
the observed top quark mass at g = m gz, respectively.
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FIG. 7. Behaviors of mlf(u)/mlf(/\x) (f = u,d,v,e;
i =1,2,3) in the non-SUSY model. The dotted, broken and
solid lines denote the first, second and third fermion masses,
respectively. The input parameter values are Ag = 3 x 10'?

GeV, As/Ar = 107 and bg(Ax) = —1.2¢"192°,
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FIG. 8. Behaviors of mlf(u)/mlf(/\x) (f = u,d,v,e;
i = 1,2,3) in the SUSY model. The dotted, broken and
solid lines denote the first, second and third fermion masses,

respectively. The input parameter values are As = 6 x 1013
GeV, As/AR = 38, tanﬁ = 3.5 and bd(AX) — _1.2¢'194°
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FIG. 9. Behavior of |Amf;(¢)| in the non-SUSY model. FIG. 10. Behavior of |AmZ, ()| in the SUSY model. The
The input parameter values are the same as in Fig. 7 with input parameter values are the same as in Fig. 8 with 4 = £§
& =& (A=L,R,5). (A=L,R,5S).
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