

Tree FCNC and non-Unitarity of Mixing Matrix

Contents

- Vector-like Iso-singlet Down-quark (VdQ)
- Exclusive $B \to M \nu \overline{\nu}$ and Leptophobic Z'
- Review of Mixing-Matrix and SVD
- Summary

Vector-like Iso-singlet Down-quark (VdQ)

C. S. Kim A. Dighe

II Vector-like-(isosinglet)-Downquark (VdQ) [and 4-th generation SM (4SM)] · low E limit of EG GUT ** models of L.E.D. -> (KK) tower of vector-like fermions for each of SM chinal quarks & leptons. ⇒ presence of tree-level FCNC (NO tree-level FCNC within SM due to GIM) For (SM) + n VdQ Mu = (3×3) ; Md = (3+n) × (3+n) $(U_{d,LR} = (3tn) \times (3tn))$ Maing = Mu ; Maing = Ude Md Udr VCKM = (LIdL) (3× (3+m)> (for C.C)

For N.C. At low emergies (i.e. only w/ 3-generations) Verm Diag (1,1,1,0,0 --) Very # I (3+2)× (3+2) N.C. in terms of flavor eigenstates: Lz = g [ū jm ULi - din Unp Indep - 2 sin & Jem] Zu $\mathcal{L}_{H} = \frac{q}{2M_{W}} \left[\bar{u}_{Li} m_{i}^{*} u_{Li} - \bar{d}_{LX} U_{XB} m_{B} d_{LB} \right],$ where $U_{\alpha\beta} = \sum_{i=u,c,t} V_{i\alpha} V_{i\beta} \neq \delta_{\alpha\beta}$ (effectively non-unitary) ⇒ tree-level FCNC.

For (SM) + one iso singlet down quark b': Vula = (6 angles dij (152<j 54) (3 phase e^{is}x (xetub, ub, cb')) Vuda = K. Vugsm - just Vugsm with 4-th row removed. $K = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ V495H = R34 (034). \$ (0, -Sch, 0, 0). R24 (024) \$ (-Sub, Sch, 0, 0). RIM (OM). \$ (Sub; 0,0,0) · R3 (B3). \$ (-Sub, 0,0,0). R13 (A15). \$ (0, 0, Sub, 0) · R12 (B12) Wolfenstein-type expansion: $V_{us} = (sin \theta_c) = \lambda$, $V_{cb} = A\lambda^2$, $V_{ub} = A\lambda^3(p+i\eta) = AC\lambda^3 e^{-i\delta_{ub}}$ [Vub' = P) e-isub', Vcb' = 92 e-isco' V+6' = r2]

PDG ⇒ 0.216 < X < 0.223, 0.76 < A < 0.90 0.23 < C < 0.59 (2002 - PDG)1st 2-row unitarity => IVubi < 0.094 , IVebi < 0.147 > P< 9.0 9<3.05 (90% CL) Z→65 → (V+V) = 0.996±0.005 → |V+6' < 0.11 (90% ct.) Y < 0.5 $(B_{d}-\overline{B}_{d}) \sim pin = \beta \qquad b \qquad u,c,t \qquad s,d$ $(B_{s}-\overline{B}_{s}) \sim pin = \chi \qquad s,d \qquad u,z,t \qquad \overline{b}$ Mixing Phases B = Arg (- Veb Ved) → (20~30) → Brda = B? $\chi = Arg\left(-\frac{V_{cb}^{*}V_{cd}}{V_{th}^{*}V_{ts}}\right) \rightarrow O(\chi^{2}) \approx 0^{\circ}(SM) \Rightarrow \chi_{VdR} = \tilde{\chi}^{?}$

• Unitary relations
(SM) Vub Vud + Vcb Vcd + Vch Vcd =0
(VUR)
$$\tilde{V}_{ud}^{*}$$
 \tilde{V}_{cd} + \tilde{V}_{ub}^{*} \tilde{V}_{cd} =0
 $\Delta \beta = \tilde{\beta} - \beta = Arg\left(\frac{\tilde{V}_{ub}^{*}}{Vcb}\tilde{V}_{cd}\right) = Arg\left(\frac{\tilde{V}_{cd}}{Vca}\right) \approx Arg\left[1 + \frac{r\lambda}{A}\left(\frac{ge^{-2} - pe^{-2ge^$

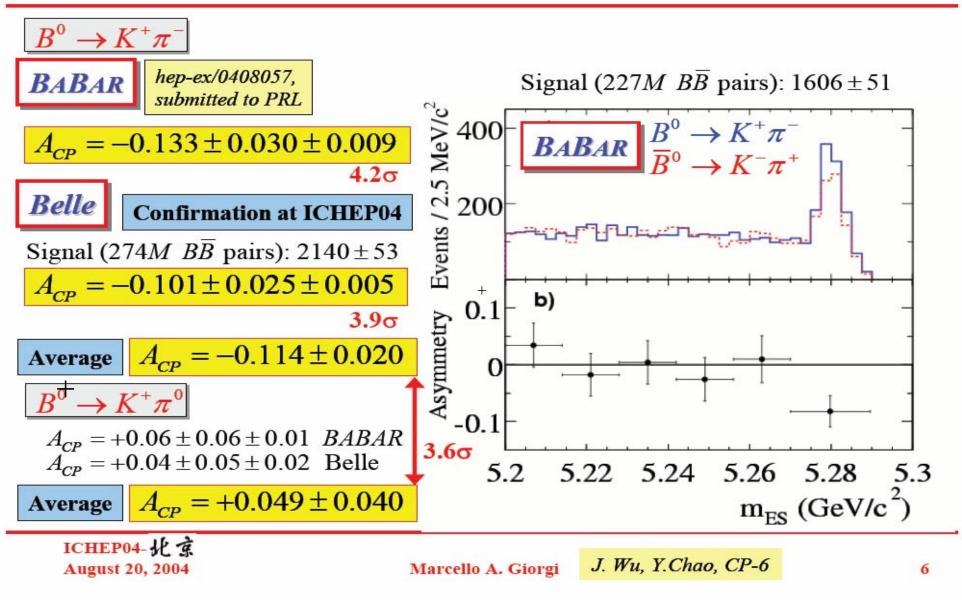
With new physics, like VdQ, we can easily fit the data :

· Recent Belle & BaBar [2002] : $sin(2\beta_{4k}) = [sin(2\beta)(SM)] = 0.734 \pm 0.054$ $sin(2\beta)(Ma) = \beta(SM) \sim 23^{\circ}$ $in(2\beta_{\phi_k}) = (in(2\beta + 2\chi) \simeq in(2\beta) + O(\chi^2)(SM)] = -0.39 \pm 0.44$ $in(2\beta_{\phi_k}) = (in(2\beta + 2\chi))(VaQ)$ $\tilde{\chi} = -0.6 \pm 0.4 \ (-34^{\circ} \pm 23^{\circ})$

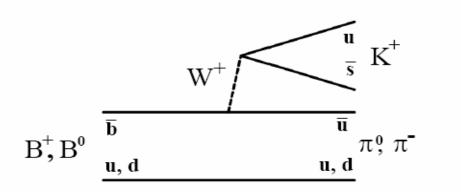
Exclusive $B \rightarrow M \bar{\nu} \bar{\nu}$ Decays and Leptophobic Z ' Model

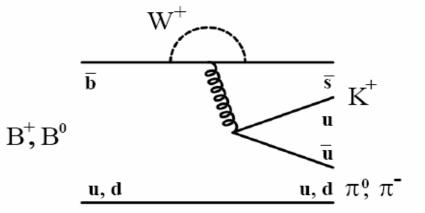
C. S. Kim (w/ J.H. Jeon, J. Lee, C. Yu) PLB636(2006)270 hep-ph/0602156

First observation of Direct CPV in B decays

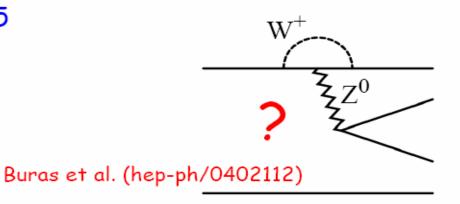


Both decay modes should show the same asymmetry





B->K⁺ π^{-} A_{CP} = -0.101[±] 0.025[±]0.005 B->K⁺ π^{0} A_{CP} = +0.04 ±0.05[±] 0.02 difference is 2.4 σ -> indication for ...?



Rainer Stamen (KEK)

Hot Topics at Belle

ICHEP04

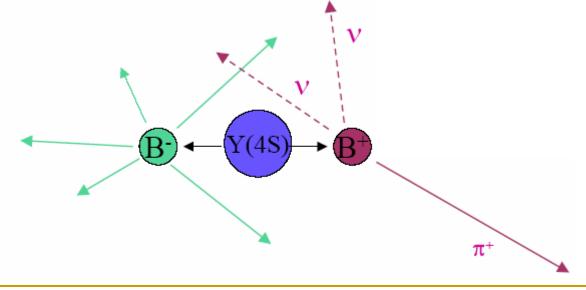
Beijing, 17th August 2004

$b \rightarrow sv\overline{v}$ and $b \rightarrow dv\overline{v}$

Single meson + missing energy in final state.

•Analyzed through reconstruction of another B meson from $Y(4S) \rightarrow B^+B^-$ event.

 Although experiments are difficult, good channel for the study of Z-mediated EW penguin contribution.



Exp. Bounds from Belle and BaBar

mode	BRs in the SM	Experimental bounds		
$B \to K \nu \bar{\nu}$	$5.31^{+1.11}_{-1.03}$	< 36 [30]		
$B \to \pi \nu \bar{\nu}$	$0.22\substack{+0.27\\-0.17}$	< 100 [31]		
$B \to K^*\! \nu \bar \nu$	$11.15^{+3.05}_{-2.70}$	< 340 (Belle)		
$B \rightarrow \rho \nu \bar{\nu}$	$0.49^{+0.61}_{-0.38}$	-		

TABLE II: Expected BRs in the SM and experimental bounds (90% C.L.) in units of 10⁻⁶.

- SM predictions are highly dependent on form factors.
- \rightarrow large theoretical uncertainty.
- **•**Kvv sensitivity now <10X SM rate.
- •b \rightarrow d transition receive larger uncertainties from $|V_{td}|$.
- Vector boson production is 2 or 3 times larger than pseudoscalar production (because of polarization).

Fate of leptophobic U(1)'



However, it still remains as a viable candidate of physics beyond SM.

exclude !!! $365 \text{ GeV} \le M_{Z'} \le 615 \text{ GeV} (D0)$

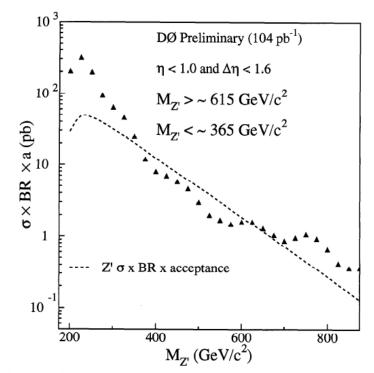


FIG. 9. The 95% CL on the production cross section ($\sigma_X \times BR \times a$) for the Z' (solid triangles) compared with the predicted cross section (dashed line). Values of $365 < M_{Z'} < 615 \text{ GeV}/c^2$ are excluded at the 95% CL.

Brief review of leptophobic Z' model Leroux, London, PLB526

 $SU(2)_{L}xU(1)_{Y}xU(1)'$: U(1)' arise from the breaking chain

$$E_6 \rightarrow SO(10) \times U(1)_{\psi}$$

$$\rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$$

$$\rightarrow SU(2)_L \times U(1)_{\chi} \times U(1)'.$$

E₆ ●Anomaly free GUT

String theory motivated

with $Q' = Q_{\psi} \cos \Theta - Q_{\chi} \cos \Theta$, where Θ is the usual E_{θ} mixing angle

TABLE I: Charges of fermions contained in the 27 representation of E_6 within the conventional

embedding	[25].	

Particle	$SU(3)_c$	Y	$2\sqrt{6}Q_{\psi}$	$2\sqrt{10}Q_{\chi}$
$Q=(u,d)^T$	3	1/6	1	-1
$L=(\nu,e)^T$	1	-1/2	1	3
u^c	3	-2/3	1	-1
d^c	3	1/3	1	3
e ^c	1	1	1	-1
ν^{c}	1	0	1	-5
$H = (N, E)^T$	1	-1/2	-2	-2
$H^e = (N^c, E^e)^T$	1	1/2	-2	2
h	3	-1/3	-2	2
h^c	3	1/3	-2	-2
S^c	1	0	4	0

The most general $SU(2)_L xU(1)_Y xU(1)'$ invariant Lagrangian include a kinetic mixing term between $U(1)_Y$ and U(1)' gauge bosons:

$$\mathcal{L}_{\rm kin} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} \widetilde{B}^{\mu\nu} \widetilde{B}_{\mu\nu} - \frac{1}{4} \widetilde{Z}^{\prime\mu\nu} \widetilde{Z}^{\prime}_{\mu\nu} - \frac{\sin\chi}{2} \widetilde{B}_{\mu\nu} \widetilde{Z}^{\prime\mu\nu},$$

With the non-unitarity transformation

$$\widetilde{B}_{\mu} = B_{\mu} - \tan \chi Z'_{\mu},$$

$$\widetilde{Z}'_{\mu} = \frac{Z'_{\mu}}{\cos \chi}.$$
(with $\delta \equiv \frac{g_{YQ'}}{g_{Q'}} = -\frac{\widetilde{g}_{Y} \sin \chi}{\widetilde{g}_{Q'}}$)

Z'-fermion interaction term can be written
$$\mathcal{L}(Z')_{int} = -\lambda \frac{g}{\cos \theta_{W}} \sqrt{\frac{5x_{W}}{3}} \, \bar{\psi} \gamma^{\mu} \left(Q' + \sqrt{\frac{3}{5}} \delta Y_{SM} \right) \psi Z'_{\mu}$$
benches in Z' if term $Q = \sqrt{245}$ and $S = 1/2$ for each participal probability of the pa

Leptophobic Z' if tan $\theta = \sqrt{3/5}$ and $\delta = -1/3$ for conventional embedding.

$$(Q' + \sqrt{\frac{3}{5}}\delta Y_{SM}) = 0$$
 for L and e^c simultaneously.

Model		$2\sqrt{6}Q\psi$	$2\sqrt{10} Q_{\chi}$		$2\sqrt{6} Q_{\psi}$	$2\sqrt{10}Q_{\chi}$	$\tan \theta$	δ
1	L:	1	3	e^{c} :	1	-1	$\sqrt{3}/5$	-1/3
2	L:	-2	-2	e^{c} :	1	-1	$\sqrt{3/5}$	-1/3
3	L:	1	3	e^{c} :	1	-5	$\sqrt{15}$	$-\sqrt{10}/3$
4	<i>L</i> :	-2	-2	e^{c} :	1	-5	$\sqrt{5/27}$	$-\sqrt{5/12}$
5	L:	1	3	e^{C} :	4	0	$\sqrt{5/3}$	$-\sqrt{5/12}$
6	<i>L</i> :	-2	-2	e^{c} :	4	0	0	$-\sqrt{10}/3$

 Q_{ψ} and Q_{χ} quantum numbers of L and e^{c} for the six embeddings of charged leptons in the 27 representation of E_{6} , along with the values of θ and δ which produce a leptophobic Z' gauge boson

U(1)' quantum numbers of d^c and h^c for each of the six models given in Table 2, calculated using $Q' = Q_{\psi} \cos \theta - Q_{\chi} \sin \theta$

		2 17 0	2 /10 0	01		2 17 0	2 /10 0	~
Model		$2\sqrt{6}Q_{\psi}$	$2\sqrt{10}Q_{\chi}$	Q'		$2\sqrt{6}Q_{\psi}$	$2\sqrt{10}Q_{\chi}$	Q^{\prime}
1	d^{c} :	1	3	$-1/2\sqrt{15}$	h^c :	-2	-2	$-1/2\sqrt{15}$
2	d^{c} :	1	3	$-1/2\sqrt{15}$	h^c :	-2	-2	$-1/2\sqrt{15}$
3	d^{c} :	1	-1	1/2√6	h^c :	-2	-2	1/2√6
4	d^{c} :	1	-1	1/4	h^c :	-2	-2	-1/4
5	d^{c} :	1	-1	1/4	h^c :	1	3	-1/4
6	d^{C} :	1	-1	1/2√6	h^c :	1	3	1/2√6

U(1)' quantum numbers of v^c and S^c for models 4 and 5 of Table 2, calculated using $Q' = Q_{\psi} \cos \theta - Q_{\chi} \sin \theta$

Model		$2\sqrt{6}Q_{\psi}$	$2\sqrt{10}Q_{\chi}$	Q'		$2\sqrt{6} Q_{\psi}$	$2\sqrt{10} Q_{\chi}$	\mathcal{Q}'
4	v^c :	1	-1	1/4	S^c :	4	0	3/4
5	v^c :	1	-1	1/4	S^{c} :	1	-5	3/4

(Leptophobic) Z'-mediated FCNCs

K.Leroux, D.London (PLB526,97) (2002)

$$\mathcal{L}_{\text{int}} = -\lambda \frac{g}{\cos \theta_W} \sqrt{\frac{5 \sin^2 \theta_W}{3}} \overline{\psi} \gamma^{\mu} \left(Q' + \sqrt{\frac{3}{5}} \delta Y_{SM} \right) Z'_{\mu} \psi$$

• neutrino
$$\mathcal{L}^{Z'} = -\frac{g}{2\cos\theta_W} Q_{\nu_R}^{Z'} \overline{\nu_R} \gamma^{\mu} \nu_R Z'_{\mu} Q_{\nu_R}^{Z'} = \frac{1}{2}\lambda \sqrt{\frac{5\sin^2\theta_W}{3}} = 0.31$$
• quark
$$\mathcal{L}_{\text{FCNC}}^{Z'} = -\frac{g}{2\cos\theta_W} U_{qp}^{Z'} \overline{d}_{qR} \gamma^{\mu} \overline{d}_{pR} Z'_{\mu} Parameterize !!$$

Two unknown parameters !!!

$$U_{_{qp}}^{_{Z^{\prime}}}$$
 , $\mathrm{M}_{_{Z^{\prime}}}$

Parametrize Z'- mediated FCNC coupling as

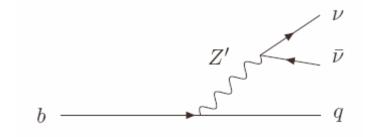
$$\mathcal{L}_{\text{FCNC}}^{Z'} = -\frac{g}{2\cos\theta_W} U_{qp}^{Z'} \bar{d}_{qR} \gamma^{\mu} d_{pR} Z'_{\mu}.$$

Z' does not couple to SM neutrino because it is leptophobic.

However, it may couple to the right-handed neutrino (v^c or S^c).

$$-\frac{g}{2\cos\theta_W}Q^{Z'}_{\nu_R}\bar{\nu}_R\gamma^\mu\nu_R Z'_\mu$$

Effectively, tree level FCNC in B decays



$$H_{\text{eff}}(b \to q\nu_R \bar{\nu}_R) = \frac{\pi \alpha}{\sin^2 2\theta_W M_{Z'}^2} U_{qb}^{Z'} Q_{\nu_R}^{Z'} \bar{q} \gamma^\mu (1+\gamma_5) b \bar{\nu} \gamma_\mu (1+\gamma_5) \nu,$$

Exclusive $B \rightarrow M \nu \overline{\nu} \ (M = \pi, K, \rho, K^*)$ Decays

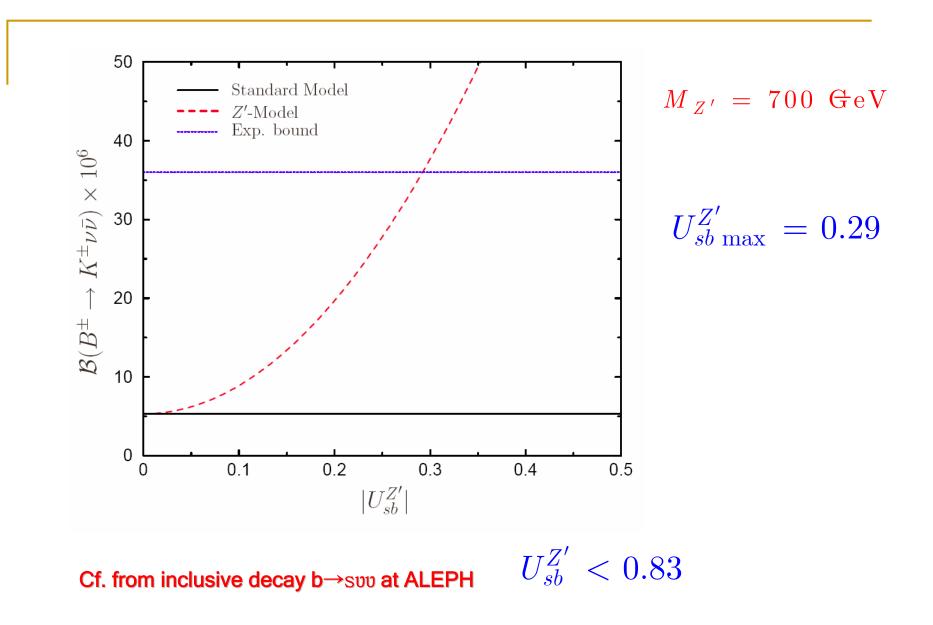
• We investigate $B \to M v \overline{v}$ $(M = \pi, K, \rho, K^*)$ Decays in the leptophobic Z' model as a possible candidate of new physics in the EW penguin sector.

$$\begin{split} \mathbf{SM} & H_{\text{eff}}(b \to q \nu_{\text{SM}} \bar{\nu}_{\text{SM}}) = \frac{G_F \alpha}{2\pi \sqrt{2}} V_{tb} V_{tq}^* C_{10}^{\nu} \bar{q} \gamma^{\mu} (1 - \gamma^5) b \bar{\nu} \gamma_{\mu} (1 - \gamma^5) \nu, \\ \mathbf{L-Z'} & H_{\text{eff}}(b \to q \nu_R \bar{\nu}_R) = \frac{\pi \alpha}{\sin^2 2\theta_W M_{Z'}^2} U_{qb}^{Z'} Q_{\nu_R}^{Z'} \bar{q} \gamma^{\mu} (1 + \gamma_5) b \bar{\nu} \gamma_{\mu} (1 + \gamma_5) \nu, \end{split}$$

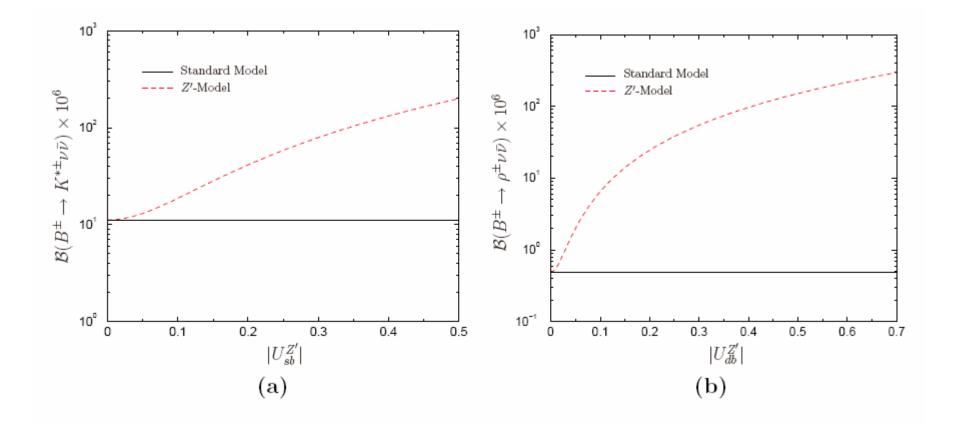
 Additional right-handed neutrinos(v^c, s^c) can contribute to the missing energy signal in B → M + E Decays

$$\mathcal{B}(B \to M \nu \bar{\nu}) = \mathcal{B}(B \to M \nu_{\rm SM} \bar{\nu}_{\rm SM}) + \mathcal{B}(B \to M \nu_R \bar{\nu}_R).$$

• Main theoretical uncertainties srise from the hadronic transition form factors for these Decays







Massive right-handed neutrino

- In principle, righthanded neutrino can be massive.
- Sharp rise near threshold
- If mass is lower than a few hundred MeV, it is hard to find difference from the massless case.

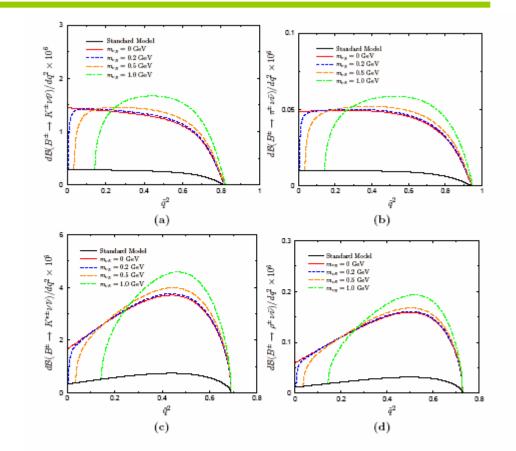


FIG. 3: Differential BRs as a function of the normalized momentum transfer square, $\tilde{q}^2 = q^2/M_B^2$, in units of 10⁻⁶, for (a) $B^{\pm} \to K^{\pm}\nu\bar{\nu}$, (b) $B^{\pm} \to \pi^{\pm}\nu\bar{\nu}$, (c) $B^{\pm} \to K^{\pm\pm}\nu\bar{\nu}$, and (d) $B^{\pm} \to \rho^{\pm}\nu\bar{\nu}$. Here the decay rates in the leptophobic Z' model are normalized to be five times larger than those in the SM.

Review of Mixing-Matrix and SVD

C. S. Kim J. D. Kim EPJC28(2003)55

Preview
D Review of CKM matrix.
• Disgonalization of quark mass methods in Yukawa interaction

$$M_{a}^{absy} = U_{at}^{at} M_{a} U_{ak}$$

 $M_{a}^{absy} = U_{at}^{at} M_{a} U_{ak}$
• CKM metrix in charged current interactions:
 $V_{ckm} = U_{at}^{at} U_{at}$
• Complex $\rightarrow 2 \times \pi^{2}$
 $freedom in quark field $\rightarrow -(2\pi-1) = (\pi-1)^{2}$
 $\Rightarrow \pi(\pi-1)/2$ rotational angles B
 $(\pi-1)(\pi-2)/2$ rotational angles C
 $(\pi-2)(\pi-2)/2$ rota$

DStep-by-step (re-) definition of Unitarity. • Weak Unitarity. $\sum_{\alpha} |V_{i\alpha}|^2 = \sum_{j} |V_{j\beta}|^2 = 1$ (for i = n, e, t(WUC) =>(looks) exptally well satisfied for n=3 generation. for part of i=u,c,t B=d,s,b and/or with <u>Different</u> area of triangles. · Full Unitarity - (Usual) Unitarity (FUC) § 6 identities to 1
6 triangles with same area * New & alternative (w/o new physics uncertainty) and flexible (to test step-by-step unitarity) garametrization of CKM matrix? * parameters maybe volues not known precisely, however, sure of no new physics uncontainties, and flexible enough to extend step-by-step.

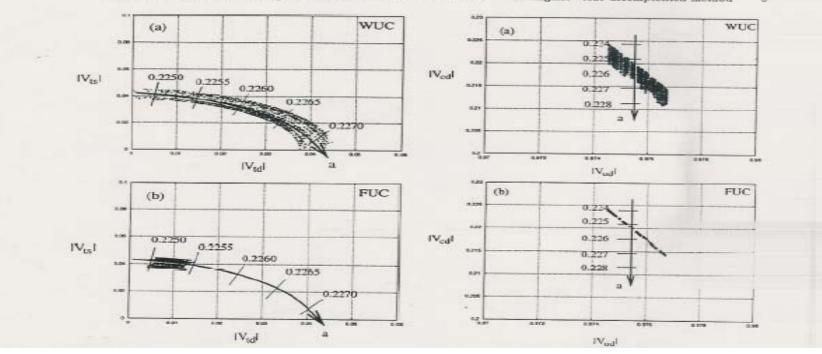
II. Singulan-Value Decamposition method (SVD)
* If you use Unitary Parametrization (eq. CKN) [Wolforstein,...),
it is very difficult to make step-by-step text to check Unitarity.*
(1) Start with 3 impats (IVus, IVus, IVus), IVus, IVus, IVus,
(2) (Val=[1-IVus]* IVus] IVus, IVus, IVus, IVus, IVus, IVus,
(2) (Val=[1-IVus]* IVus, IVus, IVus, IVus, IVus, IVus, IVus,
(3)
$$R \cdot X = B : \begin{pmatrix} 11 & 00\\ 00 & 11\\ 10 & c0 \end{pmatrix} \begin{pmatrix} 1Vus, IVus, IVus,$$

Now test FUC (5) $\rightarrow 6 \text{ more constraints} \left(\begin{array}{c} \Sigma V_{ij} V_{kj}^{*} = 0 \\ \Sigma V_{ji} V_{jk}^{*} = 0 \end{array} \right)$ $\left(\begin{array}{c} \mathbb{C} \\ \mathbb{C}$ 1=uct |Ved |Veb | \$ |Vud |Vub + |Ved |Veb | (Necessary condition) la 5 li + la -> f(l, l2, l3) = 2l, l2 + 2l, l3 + 2l, l3 - l, - la - l3 = 0 -> Heron's theorem A= s(s-li)(s-la)(s-la) = to f(li, la, l3) S= (litl2+l3)/2 => Jarlskig Invariant Jap = 2A = = Vf(li, la, l3) -> expand f in terms of a: f=f(a,a',a') 2 roots -> Q+, Q- (a+7Q-) amin a-FUC WUC Sing = 2A IVed IVed IVel IVel = Arg (- Ved Veb Vad Vas / Ain & = 2A Val IVad IVad IVad Vad (Vad) - Arg (- Vad Vad) Vad Vad Vad (Vad) (Vad) (Vad) $\alpha = \pi - \beta - \delta \stackrel{?}{=} Arg\left(-\frac{hud Vus^*}{V_{uv}}\right)$

-	matrix elements	PDC values	Sources		
10	$ V_{us} $	0.2196 ± 0.0026	Ke3 decays		
Input	$ V_{ab} $	$(3.6 \pm 0.7) \times 10^{-3}$	$ V_{ub} $ (3.6 ± 0.7) × 10 ⁻³ B semileptonic decay		
	$ V_{cb} $	$(41.2\pm 2.0)\times 10^{-3}$	B semileptonic decays		
	matrix elements	WUC	FUC	PDG	
	$ V_{cd} $	$0.210 \sim 0.224$	$0.214 \sim 0.224$	$0.219\sim 0.226$	
	$ V_{cs} $	$0.9735 \sim 0.9768$	$0.9735 \sim 0.9760$	$0.9732 \sim 0.9748$	
Output	$ V_{td} $	$0.004 \sim 0.045$	$0.004 \sim 0.014$	$0.004\sim 0.014$	
	$ V_{is} $	$0.001 \sim 0.045$	$0.035 \sim 0.045$	$0.037 \sim 0.044$	

TABLE I. Input values of the matrix elements and their sources referred from the PDG. The output values are allowed intervals (95% CL) for WUC and FUC.

C.S. Kim, J.D. Kim: A flexible parameterization of the CKM matrix via the singular-value-decomposition method 5



The elements of the modulus of the PMNS matrix are summaryized as follows:

$$\begin{pmatrix} 0.77 - 0.88 & 0.47 - 0.61 & < 0.20 \\ 0.19 - 0.52 & 0.42 - 0.73 & 0.58 - 0.82 \\ 0.20 - 0.53 & 0.44 - 0.74 & 0.56 - 0.82 \end{pmatrix}.$$

Now we used the four input values of $|U_{11}|, |U_{12}|, |U_{22}|, |U_{23}|$. The unitarity condition with the first and second columns is shown in figure 7 to be on the real axis as that in quark case.

