Review on Neutrino Oscillation Experiments

2006/12/17 For the IW on Neutrino Masses and Mixings

> Masato Shiozawa Kamioka Observatory

Outline

- -reliability of each experimental results → (some) details of experiments
- accuracies of the parameters; especially θ_{23} and $\Delta m^2_{23} \rightarrow$ current results and future prospects

Outline (cont.)

- Solar neutrinos
 - θ_{12} and Δm^2_{12}
- Atmospheric Neutrinos
 - θ_{23} and Δm^2_{23}
- Accelerator Neutrinos (and Reactor)
 - θ_{23} and Δm^2_{23}
 - search for non-zero θ_{13}
 - CP phase

Thank you to the organizer for giving me so many topics to be covered.

Status of Super-Kamiokande

Solar v Signatures in SNO (D₂O)

Extraction of ES, CC, and NC signal

(SNO 391days salt data, Phys.Rev.C72, 055502 (2005))

Allowed ($\theta_{12}, \Delta m^2_{12}$) region

 $\Delta m_{12}^{2}=8.0^{+0.6}_{-0.4} \times 10^{-5} eV^{2},$ $\theta_{12}=33.9^{+2.4}_{-2.2} degrees (68%CL)$

Allowed ($\theta_{23}, \Delta m^2_{23}$) regions

SK-I+II atmospheric neutrino data

$\nu_{\mu} \rightarrow \nu_{\tau} 2$ flavor analysis SK-I + SK-II 1489 days (SK-1)+ 804 days (SK-II) 6 $\Delta \chi^2$ distributions Best Fit: $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1.00$ 5 839.7 / 755 dof (18%) 20 99% C.L 90% C.L Δm² (10⁻³ eV²) 4 15 68% C.L χ^2 - $\chi^{2_{min}}$ 3 Preliminary 2 99% C.L. 0 -3 90% C.L. 10 10 $\Delta m^2 (eV^2)$ 1 68% C.L. 20 99% C.L. 90% C.L. 15 68% C.L. 0 0.8 0.9 0.7 χ² - χ²min 0 $sin^2 2\theta$ 5 $1.9 \times 10^{-3} \text{ eV}^2 < \Delta m^2 < 3.1 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta > 0.93$ at 90% CL 0.8 0.9 1 1.1 1.2 sin²20

High resolution L/E sample

Accelerator Neutrinos (Long Baseline experiment)

v norm. determined by near detector

Very good agreement btw data and MC.

 $N_{KT}^{\text{int}} \rightarrow N_{SK} = 158.1_{-8.6}^{+9.2}$ events expected

K2K Event selection @ far (SK)

TOF (0.83m sec) cut using GPS	Selection criteria	# of events
10 4	_ ∆T <500μsec, no pre-activity (Decay-e cut)	578k
10 3	Total q within 300n sec >200(K2K-I), 94(K2K-II) (~20MeV)	53k
10 ²	No OD activity (FC), Evis>30MeV, Fiducial volume(Dwall>2m)	115
10	ΔT =-0.2 ~ +1.3μsec	112
1 -500-400-300-200-100 0 100 200 300 400 500	SK event timing (1bin=125/2 20 125nsec	2 (nsec))
112 on-timing fully contained events in fiducial volume are observed.		
	0 500 event timing (nsec)	1000

v_{μ} disappearance allowed region

(2.55x10⁻³, 1.19) (all region)

(2.75x10⁻³, 1.0) (physical)

25 22.5 20 17.5 15 12.5 10 7.5 5 99%

 Δ likelihood @ sin²2 θ =1.0

-3

10

∆m² (eV²)

10

2.5 90%

0 68%

10

Atmnu confirmed by completely different method.

MINOS Experiment

- Main Injector Neutrino Oscillation Search
- High power ν_μ beam produced by 120 GeV protons from the Main Injector at FNAL
- Near detector (ND) at Fermilab to measure the beam composition and energy spectrum
- Far Detector (FD), 735km away, in the Soudan Mine, Minnesota
- LE-10 event composition: 92.9% $v_{\mu'}$ 5.8% $v_{\mu'}$ 1.3% v_e / v_e

MC Event Topologies

MINOS Best-Fit Spectrum

PRL 97, 191801 (2006)

Best-fit spectrum for 1.27x10²⁰ POT

Allowed Region from MINOS PRL 97, 191801 (2006)

 Fit includes penalty terms for three main systematic uncertainties

 Fit is constrained to physical region: sin²(2θ₂₃)≤1

$$\left|\Delta m_{32}^{2}\right| = 2.74^{+0.44}_{-0.26} \times 10^{-3} \text{ eV}^{2}$$

sin $^{2}2\theta_{23} = 1.00^{-0.13}_{-0.13}$

Future prospect of θ_{23} , Δm^2_{23}

Bird's-Eye View (Feb. 2006)

T2K Sensitivity in $v_{\mu} \rightarrow v_{\mu}$ disappearance

Future sensitivity study by fake data(MC)

T2K will give stringent limit.

SK atmnu, MINOS
δ(sin²2θ)∝
1/sqrt(stat.)
δ(Δm²)∝
1/sqrt(stat.)
will be compared with T2K

Search for non-zero θ_{13}

K2K v_e appearance search

—К2К-1—	$\nu\mu$ MC	beam ve	Data
FCFV	81.1	0.81	55
Single ring	50.92	0.47	33
Tight e-like cut	2.66	0.40	3
Evis > 100 MeV	2.47	0.40	2
No decay-e	1.90	0.35	1
Pi0 cut	0.58	0.17	0
—K2K-2—	νμ ΜC	beam ve	Data
—K2K-2— FCFV	νμ MC 77.4	beam ve 0.86	Data 57
—K2K-2— FCFV Single ring	νμ MC 77.4 49.41	beam ve 0.86 0.52	Data 57 34
—K2K-2— FCFV Single ring Tight e-like cut	νμ MC 77.4 49.41 3.21	beam ve 0.86 0.52 0.44	Data 57 34 5
K2K-2 FCFV Single ring Tight e-like cut Evis > 100 MeV	νμ MC 77.4 49.41 3.21 2.93	beam ve 0.86 0.52 0.44 0.44	Data 57 34 5 5
—K2K-2— FCFV Single ring Tight e-like cut Evis > 100 MeV No decay-e	 νμ MC 77.4 49.41 3.21 2.93 2.17 	beam ve 0.86 0.52 0.44 0.44 0.39	Data 57 34 5 5 4

Exclude region for v_e appearance search

<u>upper limit (90% CL)</u> sin²2θ_{μe}<0.13 @2.8x10⁻³ eV²

K2K $sin^2\theta_{13} < 0.06@2.8x10^{-3}eV^2$ (assuming $sin^22\theta_{23}=1.0$)

Consistent result

CHOOZ(reactor) $sin^2\theta_{13} < 0.03@2.8x10^{-3}eV^2$

T2K Sensitivity to θ_{13}

θ_{13} sensitivity versus year

Beyond θ_{13} (assuming sin²2 θ_{13} is larger than 0.01)

Megawatt class super (or β)-beam + Megaton class water detector

CP,

T2K phase-II: (baseline design)

2years of v run + 6 years of anti-v run \rightarrow O(10⁶) events for both runs

T2K Phase-II: other option

(see also, K. Hagiwara et al., hep-ph/0504061)

Sensitivity to mass hierarchy: T2K-II vs. (Kam+Korea) vs. Nova

Sensitivity to CP: T2K-II vs. (Kam+Korea) vs. Nona

Conclusion

- Neutrino flavor transition phenomena and some of related parameters have been experimentally established.
 - Solar and KamLAND+CPT
 - Atmospheric, K2K, MINOS
 - T2K aims to $\delta(sin^22\theta_{23}) < 1\%$, $\delta(\Delta m^2_{23}) < 10^{-4} eV^2$
- Next step is search for non-zero θ_{13}
 - reactor, T2K; sensitivity of sin²2θ₁₃~1%
 - Key to measure CP phase
- Next next step; δ
 - High intensity beam and Mton-scale far detector
 - R&D and discussions