Laser Irradiated Enhancement of Atomic Electron Capture Rate For New Physics Search

hep-ph 0605031

Takashi Shimomura (Saitama Univ.)

In Collaboration with Joe Sato and Takaaki Nomura (Saitama Univ.)

December 17-19,

1. Introduction

Electron capture processes have a potential Power to Search New Physics !

1. Majorana nature of neutrinos

$$(Z, A) + e^{-} \rightarrow (Z - 2, A) + e^{+}$$

2. Lepton Flavor Violations $\mu + e
ightarrow 2\gamma$

M. Yoshimura, hep-ph/0611362 , hep-ph/0507248 Ikeda, Nakano, Sakuda, Tanaka and Yoshimura, hep-ph/0506062

3. Mono energetic neutrino beam

M. Rolinec and J. Sato, hep-ph/0612148 J. Sato, Phys.Rev.Lett.95:131804,2005.

$$(Z,A) + e^- \rightarrow (Z-1,A) + \nu_e$$

Electron capture processes are important !

But

✓ The capture rate is generally low …

✓ LFV and LNV are rare events...

December 17-19,

An interesting way is

LASER irradiation to an atom

M. Yoshimura, hep-ph/0507248

✓ Laser Power is $\sim O(W/mm^2)$

✓ Laser Energy ~ several eV

✓ Mixture of Electron States

We found

another Enhance mechanism by a LASER

Key point of our work

Electron Capture Rate

$$\Gamma \sim |\Psi(0)|^2 \times |\mathcal{M}|^2$$

Wave function of the electron

Make the electron effectively heavier !

Table of Talk

- 1. Introduction
- 2. Non-Relativistic Equation with Laser Field
- 3. Probability Density
- 4. Competitive Ionizations
- 5. Enhancement of Atomic Electron Capture Rate
- 6. Summary and Future Work

2. Non-Relativistic Equation with LASER filed

Dirac equation

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{x}, t) = \begin{bmatrix} c\alpha \cdot (\hat{\mathbf{p}} + e\mathbf{A}(\mathbf{x}, t)) + \beta m_e c^2 - e\phi(\mathbf{x}) \end{bmatrix} \Psi(\mathbf{x}, t)$$
Vector potential
Coulomb potential
The two identical laser is irradiated from the both sides

$$\mathbf{A}(\mathbf{x},t) = 2\sqrt{\frac{2\hbar N}{\epsilon_0 \omega}} \cos(\mathbf{k} \cdot \mathbf{x}) \cos(\omega t + \phi_\alpha) \mathbf{a}_{\mathbf{k}}$$

 $N \cdots$ Average photon number density

December 17-19,

$$c\alpha \cdot \mathbf{A} + \beta m_e c^2$$

$$\beta m_{eff}c^2$$

Diagonalized by U

$$\begin{split} m_{eff}(\mathbf{x},t)c^2 &= \sqrt{m_e^2 c^4 + \left(ec^2 \mathbf{A}(\mathbf{x},t)\right)^2},\\ U(\mathbf{x},t) &= \begin{pmatrix} 1\cos\Theta(\mathbf{x},t) & -\sigma \cdot \mathbf{a}(\mathbf{x},t)\sin\Theta(\mathbf{x},t) \\ \sigma \cdot \mathbf{a}(\mathbf{x},t)\sin\Theta(\mathbf{x},t) & 1\cos\Theta(\mathbf{x},t) \end{pmatrix},\\ \mathbf{a}(\mathbf{x},t) &\equiv \frac{\mathbf{A}(\mathbf{x},t)}{|\mathbf{A}(\mathbf{x},t)|},\\ \sin\Theta(\mathbf{x},t) &= \frac{(m_{eff}(\mathbf{x},t) - m_e)c^2}{\sqrt{\left(ce\mathbf{A}(\mathbf{x},t)\right)^2 + (m_{eff}(\mathbf{x},t) - m_e)^2 c^4}},\\ \cos\Theta(\mathbf{x},t) &= \frac{|ce\mathbf{A}(\mathbf{x},t)|}{\sqrt{\left(ce\mathbf{A}(\mathbf{x},t)\right)^2 + (m_{eff}(\mathbf{x},t) - m_e)^2 c^4}}. \end{split}$$

December 17-19,

Non-Relativistic Limit

We can solve the equation by using the solution of Hydrogen-like atom

December 17-19, 2006

3. Wave Functions

Solve the non-relativistic equation perturbatively

$$E\varphi(\mathbf{x},t) = \left[\frac{\hat{\mathbf{p}}^2}{2m_{eff}} - e\phi(\mathbf{x}) - \frac{\tilde{s}^2}{2m_{eff}}\hat{p}_z^2\right]\varphi(\mathbf{x},t)$$

In the following, we consider 1s state.

Only l=even and m=0 states appear

1st order $\varphi_{100}^{(1)}(\mathbf{x}) = \tilde{s}^2 \sum_{n=2} f_{n00}^{(1)} \varphi_{n00}^{(0)} + \tilde{s}^2 \sum_{n=3} f_{n20}^{(1)} \varphi_{n20}^{(0)}$ $E_1^{(1)} = \frac{\tilde{s}^2}{2} E_1^{(0)}$ 2nd order $\varphi_{100}^{(2)}(\mathbf{x}) = \tilde{s}^4 \sum f_{nl0}^{(2)} \varphi_{nl0}^{(0)} + \tilde{s}^4 C^{(2)} \varphi_{100}^{(0)}$ l = 0.2.4 $E_1^{(2)} = \tilde{s}^4 E_1^{(0)} \left[\frac{3}{4} f_{200}^{(1)^2} + \sum_{n=3}^{\infty} \frac{n^2 - 1}{n^2} \left(f_{n00}^{(1)^2} + f_{n20}^{(1)^2} \right) \right]$

December 17-19,

December 17-19,

and

December 17-19,

December 17-19,

Probability density is determined by the 0th order

In the following

Intensity,
$$I \simeq 10^{10} \text{ W/mm}^2$$

Energy, $E_\gamma \simeq 10^{-3} \text{ eV}$

Static assumption is valid

$$\lambda = 1.3 \times 10^{-3} \text{ m} >> 1 \text{ Å}$$

 $T_L = 4.1 \times 10^{-12} \text{ sec} >> 1.5 \times 10^{-16} \text{ sec} = T_e$

Time average

$$\mathbf{A}^2(\mathbf{x},t) = \frac{4\hbar^2 I}{\epsilon_0 \ E_{\gamma}^2 c}$$

December 17-19,

5. Enhancement of Atomic Electron Capture Rate

December 17-19,

December 17-19,

Energy Dependence

 $I = 10^{10} \text{ W/mm}^2$

December 17-19,

December 17-19,

6. Summary and Future Work

We have investigated a mechanism to enhance atomic electron capture decay by a laser irradiation

- 1. The mass of electron becomes effectively heavier under the laser irradiation.
- 2. The non-relativistic equation with effective mass was derived.
- 3. Tunnel ionizations and MPI are suppressed when $I \leq 10^{13} \text{ W/mm}^2$ and E_{γ} is low.
- 4. The lower energy beam is better when the intensity is the same.
- 5. The order of magnitude enhancement can be theoretically achieved.

1. We considered the short time interval

We have to consider the time dependence of the laser for more realistic situations.

2. We replaced the vector potential by its time average

We have to calculate the time average of m_{eff}^3 for longer time period.

Electron Capture Rate

$$\Gamma = |\Psi(0)|^2 \int d\text{LIPS}|\mathcal{M}|^2$$

can enhance ? determined by the fundamental physics

- $\Psi(0)$... a wave function of a bound electron at the center
 - \mathcal{M} \cdots amplitude of the capture process with the free electron
- $dLIPS \cdots$ the Lorentz invariant phase space